Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

About the sex ratio in connection with early embryonic mortality in man

About the sex ratio in connection with early embryonic mortality in man The problem of the functioning specificity of sex chromosomes during the early stages of embryogenesis in man and the associated problem of the sex ratio in spontaneous and induced abortions, as well as in newborns, remains open. We have conducted a cytogenetic examination of 342 spontaneous abortions divided into three clinical groups on the basis of the severity of the developmental disturbances of the embryo: spontaneous abortionssensu stricto with a developed embryo without any significant intrauterine delay of development (n=100), nondeveloping pregnancies (n=176), and anembryonic fetuses (n=66). The frequency of chromosomal mutations in these groups was 22.0, 48.3, and 48.5%, respectively. Statistical analysis has demonstrated significant differences between the studied groups in the frequencies of the normal and abnormal karyotypes: the major contributions to these differences were associated with autosomal trisomy, triploidy, and the 46.XY karyotype. The presence of 46.XY may reflect the specific genetic mechanisms of the prenatal mortality of embryos with the normal karyotype, associated with sex and/or with the imprinting of X-chromosomes. The sex ratio in spontaneous abortions with the normal karyotype was as follows: 0.77 for spontaneous abortions with well-developed embryos without any significant intrauterine delay of development; 0.60 for nondeveloping pregnancies; and 0.31 for anembryonic fetuses. An analysis of DNA from the embryos and their parents has demonstrated a low probability of contamination of cell cultures with mother cells as a possible source of the prevalence of embryos with the 46.XX karyotype among spontaneous abortions. Nondeveloping pregnancies and anembryonic fetuses showed statistically significant differences in the sex ratio from the control group consisting of medical abortions (1,11). Differences in the sex ratio were due to an increasingly lower proportion of embryos with karyotype 46.XY (relative to the expected one) among the fetuses with an increased severity of developmental disturbances. The statistical “chances ratio” index also provided evidence that embryos with the 46.XY karyotype had a higher propensity to produce a well-formed fetus as compared with the female embryos. We propose that the expression of genes of the maternal X-chromosome in XY embryos supports a more stable development during early embryogenesis as compared with XX embryos. In the latter case, normal development is coupled with the operation of an additional mechanism for compensation of the dose of X-linked genes. Operation of this mechanism increases the probability of disturbances in female embryos. A higher viability of XY embryos during the early stages of ontogenesis in man appears to explain their underrepresentation in samples of spontaneously aborted embryos and appears to be the major factor responsible for the deviation of the sex ratio from the theoretically expected value. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

About the sex ratio in connection with early embryonic mortality in man

Loading next page...
 
/lp/springer_journal/about-the-sex-ratio-in-connection-with-early-embryonic-mortality-in-a6Y9pKZyAK

References (57)

Publisher
Springer Journals
Copyright
Copyright © 2000 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
DOI
10.1007/BF02758829
Publisher site
See Article on Publisher Site

Abstract

The problem of the functioning specificity of sex chromosomes during the early stages of embryogenesis in man and the associated problem of the sex ratio in spontaneous and induced abortions, as well as in newborns, remains open. We have conducted a cytogenetic examination of 342 spontaneous abortions divided into three clinical groups on the basis of the severity of the developmental disturbances of the embryo: spontaneous abortionssensu stricto with a developed embryo without any significant intrauterine delay of development (n=100), nondeveloping pregnancies (n=176), and anembryonic fetuses (n=66). The frequency of chromosomal mutations in these groups was 22.0, 48.3, and 48.5%, respectively. Statistical analysis has demonstrated significant differences between the studied groups in the frequencies of the normal and abnormal karyotypes: the major contributions to these differences were associated with autosomal trisomy, triploidy, and the 46.XY karyotype. The presence of 46.XY may reflect the specific genetic mechanisms of the prenatal mortality of embryos with the normal karyotype, associated with sex and/or with the imprinting of X-chromosomes. The sex ratio in spontaneous abortions with the normal karyotype was as follows: 0.77 for spontaneous abortions with well-developed embryos without any significant intrauterine delay of development; 0.60 for nondeveloping pregnancies; and 0.31 for anembryonic fetuses. An analysis of DNA from the embryos and their parents has demonstrated a low probability of contamination of cell cultures with mother cells as a possible source of the prevalence of embryos with the 46.XX karyotype among spontaneous abortions. Nondeveloping pregnancies and anembryonic fetuses showed statistically significant differences in the sex ratio from the control group consisting of medical abortions (1,11). Differences in the sex ratio were due to an increasingly lower proportion of embryos with karyotype 46.XY (relative to the expected one) among the fetuses with an increased severity of developmental disturbances. The statistical “chances ratio” index also provided evidence that embryos with the 46.XY karyotype had a higher propensity to produce a well-formed fetus as compared with the female embryos. We propose that the expression of genes of the maternal X-chromosome in XY embryos supports a more stable development during early embryogenesis as compared with XX embryos. In the latter case, normal development is coupled with the operation of an additional mechanism for compensation of the dose of X-linked genes. Operation of this mechanism increases the probability of disturbances in female embryos. A higher viability of XY embryos during the early stages of ontogenesis in man appears to explain their underrepresentation in samples of spontaneously aborted embryos and appears to be the major factor responsible for the deviation of the sex ratio from the theoretically expected value.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Nov 18, 2007

There are no references for this article.