About the impact of wind turbine blade tip vortices on helicopter rotor trim and rotor blade motion

About the impact of wind turbine blade tip vortices on helicopter rotor trim and rotor blade motion With increasing numbers of large wind turbines on-shore and off-shore, interactions of their wake with helicopters become a subject worth investigating. In this paper, the wake is modeled as a tip vortex helix with a vortex strength estimated from the wind turbine thrust. Helicopter rotors of different size and hub layout are subjected to the wake and the collective and cyclic control inputs required to keep the trim are compared to the maximum available control range of the rotorcraft. In addition, the blade flapping response due to the vortex influence without pilot action is computed and compared to maximum allowed flapping angles. It is found that typical on-shore wind turbines could be a hazard for ultralight helicopters, but not for larger helicopters. Large off-shore wind turbines, however, could even be a danger for small helicopters that may be used for maintenance. In addition, the results are compared to fixed-wing wake vortex interaction with a helicopter as given in the literature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png CEAS Aeronautical Journal Springer Journals

About the impact of wind turbine blade tip vortices on helicopter rotor trim and rotor blade motion

Loading next page...
 
/lp/springer_journal/about-the-impact-of-wind-turbine-blade-tip-vortices-on-helicopter-ECVCxAaavK
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Deutsches Zentrum für Luft- und Raumfahrt e.V.
Subject
Engineering; Aerospace Technology and Astronautics
ISSN
1869-5582
eISSN
1869-5590
D.O.I.
10.1007/s13272-017-0276-x
Publisher site
See Article on Publisher Site

Abstract

With increasing numbers of large wind turbines on-shore and off-shore, interactions of their wake with helicopters become a subject worth investigating. In this paper, the wake is modeled as a tip vortex helix with a vortex strength estimated from the wind turbine thrust. Helicopter rotors of different size and hub layout are subjected to the wake and the collective and cyclic control inputs required to keep the trim are compared to the maximum available control range of the rotorcraft. In addition, the blade flapping response due to the vortex influence without pilot action is computed and compared to maximum allowed flapping angles. It is found that typical on-shore wind turbines could be a hazard for ultralight helicopters, but not for larger helicopters. Large off-shore wind turbines, however, could even be a danger for small helicopters that may be used for maintenance. In addition, the results are compared to fixed-wing wake vortex interaction with a helicopter as given in the literature.

Journal

CEAS Aeronautical JournalSpringer Journals

Published: Dec 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off