About an Optimal Visiting Problem

About an Optimal Visiting Problem In this paper we are concerned with the optimal control problem consisting in minimizing the time for reaching (visiting) a fixed number of target sets, in particular more than one target. Such a problem is of course reminiscent of the famous “Traveling Salesman Problem” and brings all its computational difficulties. Our aim is to apply the dynamic programming technique in order to characterize the value function of the problem as the unique viscosity solution of a suitable Hamilton–Jacobi equation. We introduce some “external” variables, one per target, which keep in memory whether the corresponding target is already visited or not, and we transform the visiting problem in a suitable Mayer problem. This fact allows us to overcome the lacking of the Dynamic Programming Principle for the originary problem. The external variables evolve with a hysteresis law and the Hamilton–Jacobi equation turns out to be discontinuous http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

About an Optimal Visiting Problem

Loading next page...
 
/lp/springer_journal/about-an-optimal-visiting-problem-KRuwRCYXSU
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Mathematics; Mathematical Methods in Physics; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Calculus of Variations and Optimal Control; Optimization; Numerical and Computational Physics
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-011-9150-0
Publisher site
See Article on Publisher Site

Abstract

In this paper we are concerned with the optimal control problem consisting in minimizing the time for reaching (visiting) a fixed number of target sets, in particular more than one target. Such a problem is of course reminiscent of the famous “Traveling Salesman Problem” and brings all its computational difficulties. Our aim is to apply the dynamic programming technique in order to characterize the value function of the problem as the unique viscosity solution of a suitable Hamilton–Jacobi equation. We introduce some “external” variables, one per target, which keep in memory whether the corresponding target is already visited or not, and we transform the visiting problem in a suitable Mayer problem. This fact allows us to overcome the lacking of the Dynamic Programming Principle for the originary problem. The external variables evolve with a hysteresis law and the Hamilton–Jacobi equation turns out to be discontinuous

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Feb 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off