ABA content in shoots and roots of pea mutants af and tl as related to their growth and morphogenesis

ABA content in shoots and roots of pea mutants af and tl as related to their growth and... The comparative study of shoot and root growth was carried out, and the level of ABA therein determined in the mutant af and tl and wild-type isogenic lines of pea. The recessive af mutation transformed the leaflets into tendrils, and the tl mutation transformed the tendrils into leaflets. These mutations did not affect the length and number of internodes. In all plants, the level of ABA in the leaves was 3–10 times greater than in the roots, and in the course of vegetative growth it rose in both organs. An increase in the shoot area of tl mutant did not change the dry weight of underground and above-ground parts; therefore, the ratio shoot/root in the mutant was identical to that in the wild-type plants. The maintenance of shoot dry weight in the tl mutant at the level of wild-type plant while its area considerably increased was accounted for by a decrease in the thickness of the leaflet and stipule blades. The level of ABA in the stipules of mutant plants was greater than in the wild-type plants. A decrease in the shoot area in the af mutant brought about a decline in its dry weight; however, the ratio root/shoot was maintained at the wild-type level due to a reduced accumulation of dry weight by the root. The level of ABA in the roots of the af mutant was twice greater than in the leafy forms. ABA was assumed to participate in the control over the root growth exerted by the shoot. The absence of leaflets in the af plants was partially compensated for by expanding stipules. The level of ABA therein was three times higher than in the plants of wild type and comparable with the level in the leaflets of the tl mutant and in the wild-type plants. The role of ABA in the growth and final size of leaf blades is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

ABA content in shoots and roots of pea mutants af and tl as related to their growth and morphogenesis

Loading next page...
 
/lp/springer_journal/aba-content-in-shoots-and-roots-of-pea-mutants-af-and-tl-as-related-to-MztbGoXrgJ
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443706030113
Publisher site
See Article on Publisher Site

Abstract

The comparative study of shoot and root growth was carried out, and the level of ABA therein determined in the mutant af and tl and wild-type isogenic lines of pea. The recessive af mutation transformed the leaflets into tendrils, and the tl mutation transformed the tendrils into leaflets. These mutations did not affect the length and number of internodes. In all plants, the level of ABA in the leaves was 3–10 times greater than in the roots, and in the course of vegetative growth it rose in both organs. An increase in the shoot area of tl mutant did not change the dry weight of underground and above-ground parts; therefore, the ratio shoot/root in the mutant was identical to that in the wild-type plants. The maintenance of shoot dry weight in the tl mutant at the level of wild-type plant while its area considerably increased was accounted for by a decrease in the thickness of the leaflet and stipule blades. The level of ABA in the stipules of mutant plants was greater than in the wild-type plants. A decrease in the shoot area in the af mutant brought about a decline in its dry weight; however, the ratio root/shoot was maintained at the wild-type level due to a reduced accumulation of dry weight by the root. The level of ABA in the roots of the af mutant was twice greater than in the leafy forms. ABA was assumed to participate in the control over the root growth exerted by the shoot. The absence of leaflets in the af plants was partially compensated for by expanding stipules. The level of ABA therein was three times higher than in the plants of wild type and comparable with the level in the leaflets of the tl mutant and in the wild-type plants. The role of ABA in the growth and final size of leaf blades is discussed.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 15, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off