Ab Initio Investigations of Structural, Elastic, Mechanical, Electronic, Magnetic, and Optical Properties of Half-Heusler Compounds RhCrZ (Z = Si, Ge)

Ab Initio Investigations of Structural, Elastic, Mechanical, Electronic, Magnetic, and Optical... The first principle study of half-Heusler compounds RhCrZ (Z = Si, Ge) is performed in the framework of density functional theory (DFT). The compounds are found to have small band gap in the minority spin channel (spin-down). While the majority spin channel (spin-up) is metallic. Therefore, both compounds are half-metallic and 100 % spin polarized at Fermi level. Several properties including structural, mechanical, elastic, electronic, magnetic, and optical are computed using the full potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2k simulation package. Equilibrium lattice constants for both compounds are found to be in the range 5.5–6.0 Å. Elastic properties indicate the ductile nature of the compounds. The total magnetic moments for these compounds are approximately equal to 1μ B, i.e., MTot ≈ 1μ B. Hence, the compounds are weak ferromagnetic materials. We have calculated the complex dielectric function. Many optical properties including reflectivity, refractive index, conductivity, and absorption coefficients are obtained form dielectric function. Imaginary part of the dielectric functions shows that compounds are optically metallic and become transparent above 17 and 13 eV, respectively. It is also observed that compounds are more active in the infrared region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Superconductivity and Novel Magnetism Springer Journals

Ab Initio Investigations of Structural, Elastic, Mechanical, Electronic, Magnetic, and Optical Properties of Half-Heusler Compounds RhCrZ (Z = Si, Ge)

Loading next page...
 
/lp/springer_journal/ab-initio-investigations-of-structural-elastic-mechanical-electronic-Xrf0rIIZwV
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Physics; Strongly Correlated Systems, Superconductivity; Magnetism, Magnetic Materials; Condensed Matter Physics; Characterization and Evaluation of Materials
ISSN
1557-1939
eISSN
1557-1947
D.O.I.
10.1007/s10948-017-4051-3
Publisher site
See Article on Publisher Site

Abstract

The first principle study of half-Heusler compounds RhCrZ (Z = Si, Ge) is performed in the framework of density functional theory (DFT). The compounds are found to have small band gap in the minority spin channel (spin-down). While the majority spin channel (spin-up) is metallic. Therefore, both compounds are half-metallic and 100 % spin polarized at Fermi level. Several properties including structural, mechanical, elastic, electronic, magnetic, and optical are computed using the full potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2k simulation package. Equilibrium lattice constants for both compounds are found to be in the range 5.5–6.0 Å. Elastic properties indicate the ductile nature of the compounds. The total magnetic moments for these compounds are approximately equal to 1μ B, i.e., MTot ≈ 1μ B. Hence, the compounds are weak ferromagnetic materials. We have calculated the complex dielectric function. Many optical properties including reflectivity, refractive index, conductivity, and absorption coefficients are obtained form dielectric function. Imaginary part of the dielectric functions shows that compounds are optically metallic and become transparent above 17 and 13 eV, respectively. It is also observed that compounds are more active in the infrared region.

Journal

Journal of Superconductivity and Novel MagnetismSpringer Journals

Published: Mar 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off