Aaknox1, a kn1-like homeobox gene in Acetabularia acetabulum, undergoes developmentally regulated subcellular localization

Aaknox1, a kn1-like homeobox gene in Acetabularia acetabulum, undergoes developmentally regulated... Homeobox-containing genes play developmentally important roles in a wide variety of plants, animals and fungi. As a way of studying how development is controlled in the unicellular green macroalga Acetabularia acetabulum, we used degenerate PCR to clone a knotted1-like (kn1-like) homeobox gene, Aaknox1 (A cetabularia a cetabulum kn 1-like homeobox 1). Aaknox1 is the first knotted1-like homeobox gene to be cloned from a non-vascular plant and shows strong conservation with kn1-like genes from the vascular plants (ca. 56% amino acid identity within the homeodomain). Sequencing of cDNA clones indicates that Aaknox1 possesses at least two distinct polyadenylation sites spaced ca. 600 bp apart. Southern analysis suggests that several other kn1-like homeobox genes exist in the Acetabularia genome. Northern analyses demonstrate that expression of Aaknox1 is developmentally regulated, with peak levels of expression during early reproductive phase. Northern analyses further demonstrate that Aaknox1 mRNA undergoes a change in its subcellular localization pattern during the progression from late vegetative to early reproductive phase. In late adult phase, Aaknox1 is distributed uniformly throughout the alga; in early reproductive phase, Aaknox1 is present in a gradient with the highest concentration of the mRNA at the base of the stalk, near the single nucleus. These data suggest that Aaknox1 may have a role during early reproductive development and that mRNA localization may be one mechanism by which A. acetabulum regulates gene expression post-transcriptionally. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Aaknox1, a kn1-like homeobox gene in Acetabularia acetabulum, undergoes developmentally regulated subcellular localization

Loading next page...
 
/lp/springer_journal/aaknox1-a-kn1-like-homeobox-gene-in-acetabularia-acetabulum-undergoes-0qIHO8rZiC
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006387107071
Publisher site
See Article on Publisher Site

Abstract

Homeobox-containing genes play developmentally important roles in a wide variety of plants, animals and fungi. As a way of studying how development is controlled in the unicellular green macroalga Acetabularia acetabulum, we used degenerate PCR to clone a knotted1-like (kn1-like) homeobox gene, Aaknox1 (A cetabularia a cetabulum kn 1-like homeobox 1). Aaknox1 is the first knotted1-like homeobox gene to be cloned from a non-vascular plant and shows strong conservation with kn1-like genes from the vascular plants (ca. 56% amino acid identity within the homeodomain). Sequencing of cDNA clones indicates that Aaknox1 possesses at least two distinct polyadenylation sites spaced ca. 600 bp apart. Southern analysis suggests that several other kn1-like homeobox genes exist in the Acetabularia genome. Northern analyses demonstrate that expression of Aaknox1 is developmentally regulated, with peak levels of expression during early reproductive phase. Northern analyses further demonstrate that Aaknox1 mRNA undergoes a change in its subcellular localization pattern during the progression from late vegetative to early reproductive phase. In late adult phase, Aaknox1 is distributed uniformly throughout the alga; in early reproductive phase, Aaknox1 is present in a gradient with the highest concentration of the mRNA at the base of the stalk, near the single nucleus. These data suggest that Aaknox1 may have a role during early reproductive development and that mRNA localization may be one mechanism by which A. acetabulum regulates gene expression post-transcriptionally.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off