A yield mapping system for hand-harvested fruits based on RFID and GPS location technologies: field testing

A yield mapping system for hand-harvested fruits based on RFID and GPS location technologies:... It is proposed that radio frequency identification (RFID) technology be used to overcome the limitations of existing yield mapping systems for manual fresh fruit harvesting. Two methods are proposed for matching bins—containing harvested fruits—with corresponding pairs of trees. In the first method, a long-range RFID reader and a DGPS are mounted on an orchard tractor and passive low-cost RFID tags are attached to the bins. In the second method, the DGPS is not used and RFID tags are attached to individual trees as well as bins. An experimental evaluation of the accuracy and reliability of both methods was performed in an orchard. The first method failed in half of the trials because the tree canopies interfered with the GPS signal. The RFID reader miss ratio for the detection of the bins was 0.32% for both methods. However, the attachment of RFID tags on suitable tree branches (to achieve 100% detection), in the second method, is not a well-defined procedure; some trial is demanded to determine the best positions and orientations of the tree tags in order for the RFID reader to successfully detect them. The first method seems more promising if robust tractor location under foliage can be achieved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

A yield mapping system for hand-harvested fruits based on RFID and GPS location technologies: field testing

Loading next page...
 
/lp/springer_journal/a-yield-mapping-system-for-hand-harvested-fruits-based-on-rfid-and-gps-ict9grA0Ms
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-008-9095-8
Publisher site
See Article on Publisher Site

Abstract

It is proposed that radio frequency identification (RFID) technology be used to overcome the limitations of existing yield mapping systems for manual fresh fruit harvesting. Two methods are proposed for matching bins—containing harvested fruits—with corresponding pairs of trees. In the first method, a long-range RFID reader and a DGPS are mounted on an orchard tractor and passive low-cost RFID tags are attached to the bins. In the second method, the DGPS is not used and RFID tags are attached to individual trees as well as bins. An experimental evaluation of the accuracy and reliability of both methods was performed in an orchard. The first method failed in half of the trials because the tree canopies interfered with the GPS signal. The RFID reader miss ratio for the detection of the bins was 0.32% for both methods. However, the attachment of RFID tags on suitable tree branches (to achieve 100% detection), in the second method, is not a well-defined procedure; some trial is demanded to determine the best positions and orientations of the tree tags in order for the RFID reader to successfully detect them. The first method seems more promising if robust tractor location under foliage can be achieved.

Journal

Precision AgricultureSpringer Journals

Published: Nov 23, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off