A wavelet lifting approach to long-memory estimation

A wavelet lifting approach to long-memory estimation Reliable estimation of long-range dependence parameters is vital in time series. For example, in environmental and climate science such estimation is often key to understanding climate dynamics, variability and often prediction. The challenge of data collection in such disciplines means that, in practice, the sampling pattern is either irregular or blighted by missing observations. Unfortunately, virtually all existing Hurst parameter estimation methods assume regularly sampled time series and require modification to cope with irregularity or missing data. However, such interventions come at the price of inducing higher estimator bias and variation, often worryingly ignored. This article proposes a new Hurst exponent estimation method which naturally copes with data sampling irregularity. The new method is based on a multiscale lifting transform exploiting its ability to produce wavelet-like coefficients on irregular data and, simultaneously, to effect a necessary powerful decorrelation of those coefficients. Simulations show that our method is accurate and effective, performing well against competitors even in regular data settings. Armed with this evidence our method sheds new light on long-memory intensity results in environmental and climate science applications, sometimes suggesting that different scientific conclusions may need to be drawn. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistics and Computing Springer Journals

A wavelet lifting approach to long-memory estimation

Loading next page...
 
/lp/springer_journal/a-wavelet-lifting-approach-to-long-memory-estimation-ZS3B9oynOs
Publisher
Springer US
Copyright
Copyright © 2016 by The Author(s)
Subject
Statistics; Statistics and Computing/Statistics Programs; Artificial Intelligence (incl. Robotics); Statistical Theory and Methods; Probability and Statistics in Computer Science
ISSN
0960-3174
eISSN
1573-1375
D.O.I.
10.1007/s11222-016-9698-2
Publisher site
See Article on Publisher Site

Abstract

Reliable estimation of long-range dependence parameters is vital in time series. For example, in environmental and climate science such estimation is often key to understanding climate dynamics, variability and often prediction. The challenge of data collection in such disciplines means that, in practice, the sampling pattern is either irregular or blighted by missing observations. Unfortunately, virtually all existing Hurst parameter estimation methods assume regularly sampled time series and require modification to cope with irregularity or missing data. However, such interventions come at the price of inducing higher estimator bias and variation, often worryingly ignored. This article proposes a new Hurst exponent estimation method which naturally copes with data sampling irregularity. The new method is based on a multiscale lifting transform exploiting its ability to produce wavelet-like coefficients on irregular data and, simultaneously, to effect a necessary powerful decorrelation of those coefficients. Simulations show that our method is accurate and effective, performing well against competitors even in regular data settings. Armed with this evidence our method sheds new light on long-memory intensity results in environmental and climate science applications, sometimes suggesting that different scientific conclusions may need to be drawn.

Journal

Statistics and ComputingSpringer Journals

Published: Sep 3, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off