A virtual globe-based integration and visualization framework for aboveground and underground 3D spatial objects

A virtual globe-based integration and visualization framework for aboveground and underground 3D... The construction of a large-scale integrated information system has been a hot issue in the field of geoinformatics. It aims to integrate aboveground and underground spatial information and objects in a unified visual environment. Virtual globe, as the most commonly used technology in the construction of Digital Earth, can provide a platform and framework for the integration and visualization of worldwide spatial objects and models. However, the existing works mainly focused on terrains and aboveground spatial entities, and there is still little research on the integration and visualization of large-scale underground geological models and entities in a virtual globe. In this work, the data organizations of aboveground and underground 3D spatial objects were analyzed in detail according to the technical characteristics of the virtual globe. Improved strategies were proposed to achieve the integrated visualization of aboveground and underground 3D spatial objects in a virtual globe-based spherical coordinate. In this process, the terrain surface based on Triangulated Irregular Network (TIN) was used as an intermediate layer to unify the spatial coordinate system. An improved scene cutting approach was used to overcome the challenge that underground geological structures cannot be integrated and visualized with aboveground spatial entities, terrains and landforms. Finally, we developed a virtual globe-based prototype system using OpenSceneGraph (OSG) and osgEarth as the 3D visualization engine. The aboveground and underground spatial models of Fuzhou, a coastal city of eastern China, were applied in this system to verify the validity of the strategies proposed in this paper. In addition, the efficiency of this system in terms of scheduling and visualizing was tested by using the massive models of Fuzhou. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Earth Science Informatics Springer Journals

A virtual globe-based integration and visualization framework for aboveground and underground 3D spatial objects

Loading next page...
 
/lp/springer_journal/a-virtual-globe-based-integration-and-visualization-framework-for-oC3D1p1FKX
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Earth Sciences; Earth Sciences, general; Information Systems Applications (incl.Internet); Simulation and Modeling ; Ontology
ISSN
1865-0473
eISSN
1865-0481
D.O.I.
10.1007/s12145-018-0350-x
Publisher site
See Article on Publisher Site

Abstract

The construction of a large-scale integrated information system has been a hot issue in the field of geoinformatics. It aims to integrate aboveground and underground spatial information and objects in a unified visual environment. Virtual globe, as the most commonly used technology in the construction of Digital Earth, can provide a platform and framework for the integration and visualization of worldwide spatial objects and models. However, the existing works mainly focused on terrains and aboveground spatial entities, and there is still little research on the integration and visualization of large-scale underground geological models and entities in a virtual globe. In this work, the data organizations of aboveground and underground 3D spatial objects were analyzed in detail according to the technical characteristics of the virtual globe. Improved strategies were proposed to achieve the integrated visualization of aboveground and underground 3D spatial objects in a virtual globe-based spherical coordinate. In this process, the terrain surface based on Triangulated Irregular Network (TIN) was used as an intermediate layer to unify the spatial coordinate system. An improved scene cutting approach was used to overcome the challenge that underground geological structures cannot be integrated and visualized with aboveground spatial entities, terrains and landforms. Finally, we developed a virtual globe-based prototype system using OpenSceneGraph (OSG) and osgEarth as the 3D visualization engine. The aboveground and underground spatial models of Fuzhou, a coastal city of eastern China, were applied in this system to verify the validity of the strategies proposed in this paper. In addition, the efficiency of this system in terms of scheduling and visualizing was tested by using the massive models of Fuzhou.

Journal

Earth Science InformaticsSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off