A velocity dependent effective angle method for calibration of X-probes at low velocities

A velocity dependent effective angle method for calibration of X-probes at low velocities A velocity dependent effective angle (VDEA) method for the calibration of yaw response of hot-wire X-probes at low flow velocities (0.5–6 m/s) is presented. Comparisons with a full velocity vs. yaw-angle method (Österlund 1999) in a smooth wall channel flow indicate that there is only moderate advantage in using the latter method, which is considerably more laborious. Comparisons with direct numerical simulations (DNS) (Moser et al. 1999) and the more common fixed effective angle method (FEA) show that the VDEA method significantly improves estimates of Reynolds stresses compared to the FEA method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A velocity dependent effective angle method for calibration of X-probes at low velocities

Loading next page...
 
/lp/springer_journal/a-velocity-dependent-effective-angle-method-for-calibration-of-x-0Zn4goaXeZ
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0798-y
Publisher site
See Article on Publisher Site

Abstract

A velocity dependent effective angle (VDEA) method for the calibration of yaw response of hot-wire X-probes at low flow velocities (0.5–6 m/s) is presented. Comparisons with a full velocity vs. yaw-angle method (Österlund 1999) in a smooth wall channel flow indicate that there is only moderate advantage in using the latter method, which is considerably more laborious. Comparisons with direct numerical simulations (DNS) (Moser et al. 1999) and the more common fixed effective angle method (FEA) show that the VDEA method significantly improves estimates of Reynolds stresses compared to the FEA method.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 28, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off