A Varifold Approach to Surface Approximation

A Varifold Approach to Surface Approximation We show that the theory of varifolds can be suitably enriched to open the way to applications in the field of discrete and computational geometry. Using appropriate regularizations of the mass and of the first variation of a varifold we introduce the notion of approximate mean curvature and show various convergence results that hold, in particular, for sequences of discrete varifolds associated with point clouds or pixel/voxel-type discretizations of d-surfaces in the Euclidean n-space, without restrictions on dimension and codimension. The variational nature of the approach also allows us to consider surfaces with singularities, and in that case the approximate mean curvature is consistent with the generalized mean curvature of the limit surface. A series of numerical tests are provided in order to illustrate the effectiveness and generality of the method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archive for Rational Mechanics and Analysis Springer Journals

A Varifold Approach to Surface Approximation

Loading next page...
 
/lp/springer_journal/a-varifold-approach-to-surface-approximation-lbJEEmIXUW
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Classical Mechanics; Physics, general; Theoretical, Mathematical and Computational Physics; Complex Systems; Fluid- and Aerodynamics
ISSN
0003-9527
eISSN
1432-0673
D.O.I.
10.1007/s00205-017-1141-0
Publisher site
See Article on Publisher Site

Abstract

We show that the theory of varifolds can be suitably enriched to open the way to applications in the field of discrete and computational geometry. Using appropriate regularizations of the mass and of the first variation of a varifold we introduce the notion of approximate mean curvature and show various convergence results that hold, in particular, for sequences of discrete varifolds associated with point clouds or pixel/voxel-type discretizations of d-surfaces in the Euclidean n-space, without restrictions on dimension and codimension. The variational nature of the approach also allows us to consider surfaces with singularities, and in that case the approximate mean curvature is consistent with the generalized mean curvature of the limit surface. A series of numerical tests are provided in order to illustrate the effectiveness and generality of the method.

Journal

Archive for Rational Mechanics and AnalysisSpringer Journals

Published: Jun 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off