A variant of environmental adaptation method with real parameter encoding and its application in economic load dispatch problem

A variant of environmental adaptation method with real parameter encoding and its application in... Environmental Adaptation Method (EAM) and Improved Environmental Adaptation Method (IEAM) were proposed to solve optimization problems with the biological theory of adaptation in mind. Both of these algorithms work with binary encoding, and their performance is comparable with other state-of-art algorithms. To further improve the performance of these algorithms, some major changes are incorporated into the proposed algorithm. The proposed algorithm works with the real value parameter encoding, and, in order to maintain significant convergence rate and diversity, it maintains a balance between exploitation and exploration. The choice to explore or exploit a solution depends on the fitness of the individual. The performance of the proposed algorithm is compared with 17 state-of-art algorithms in 2-D, 3-D, 5-D, 10-D and 20-D dimensions using the COCO (COmparing Continuous Optimisers) framework with Black-Box Optimization Benchmarking (BBOB) functions. It outperforms all other algorithms in 3-D and 5-D, and its performance is comparable to other algorithms for other dimensions. In addition, IEAM-R has been applied to the real world problem of economic load dispatch, and its results demonstrate that it gives minimum fuel cost when compared to other algorithms in different cases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

A variant of environmental adaptation method with real parameter encoding and its application in economic load dispatch problem

Loading next page...
 
/lp/springer_journal/a-variant-of-environmental-adaptation-method-with-real-parameter-UlnV5kopQ2
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
D.O.I.
10.1007/s10489-017-0900-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial