A UV-light induced photochemical method for graphene oxide reduction

A UV-light induced photochemical method for graphene oxide reduction Chemical reduction of graphene oxide (GO) has been considered as a promising route towards the large scale production of graphene. Herein, a rapid, efficient photochemical method for preparing reduced graphene oxide (RGO) by ultraviolet (UV) irradiation of a mixture solution containing a photoinitiator and Monoethanolamine (MEA) compound in ethanol has been developed. In this route, phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (GR-XBPO) was used as the reductant and MEA as the oxygen inhibition agent. After UV irradiation, oxygen-containing groups (OCGs) on GO plane and edges are being largely removed due to the reduction of GO by free radicals generated by photoinitiator decomposition. X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet and visible spectrophotometer showed that GR-XBPO can efficiently reduce GO at room temperature. It is also found that the electrical conductivity of RGO fabricated by this rapid route (~10 min) is more competitive compared to other reported works. Moreover the corresponding reduction mechanism was being discussed. This work puts forward a novel method for preparing graphene, and has great potential in scaling up graphene production and developing graphene materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

A UV-light induced photochemical method for graphene oxide reduction

Loading next page...
 
/lp/springer_journal/a-uv-light-induced-photochemical-method-for-graphene-oxide-reduction-52zU88SpdG
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1266-4
Publisher site
See Article on Publisher Site

Abstract

Chemical reduction of graphene oxide (GO) has been considered as a promising route towards the large scale production of graphene. Herein, a rapid, efficient photochemical method for preparing reduced graphene oxide (RGO) by ultraviolet (UV) irradiation of a mixture solution containing a photoinitiator and Monoethanolamine (MEA) compound in ethanol has been developed. In this route, phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (GR-XBPO) was used as the reductant and MEA as the oxygen inhibition agent. After UV irradiation, oxygen-containing groups (OCGs) on GO plane and edges are being largely removed due to the reduction of GO by free radicals generated by photoinitiator decomposition. X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet and visible spectrophotometer showed that GR-XBPO can efficiently reduce GO at room temperature. It is also found that the electrical conductivity of RGO fabricated by this rapid route (~10 min) is more competitive compared to other reported works. Moreover the corresponding reduction mechanism was being discussed. This work puts forward a novel method for preparing graphene, and has great potential in scaling up graphene production and developing graphene materials.

Journal

Journal of Materials ScienceSpringer Journals

Published: Jul 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off