A UV-curable epoxy with “soft” segments for 3D-printable shape-memory materials

A UV-curable epoxy with “soft” segments for 3D-printable shape-memory materials Three-dimensional (3D)-printable shape-memory polymers (SMPs) are of great interest for making advanced shape-memory materials. However, it has been challenging to combine 3D-printable capability with shape-memory function into one material. Here, we report a UV-curable epoxy with excellent shape-memory performance and improved toughness as compared with traditional epoxy counterpart. The epoxy system is realized by cross-linking epoxy resin diglycidyl ether of bisphenol F (DGEBF) (“hard” segments) with toughening agent 3-ethyl-3-oxetanemethanol (TMPO) (“soft” segments), which finally creates a three-dimensional network with TMPO-co-DGEBF block structures. The fold-deploy tests show that the shape fixity ratio (R f) and the shape recovery ratio (R r) of the epoxy with 50 wt% TMPO soft segment are above 97 and 99% even after 20 cycles of testing, respectively. In addition to bringing shape-memory performance, the toughness of the epoxy system is notably improved by the TMPO soft segments. This study provides a very promising epoxy system for 3D-printable shape-memory materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

A UV-curable epoxy with “soft” segments for 3D-printable shape-memory materials

Loading next page...
 
/lp/springer_journal/a-uv-curable-epoxy-with-soft-segments-for-3d-printable-shape-memory-JHPBQJxTab
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-018-2520-0
Publisher site
See Article on Publisher Site

Abstract

Three-dimensional (3D)-printable shape-memory polymers (SMPs) are of great interest for making advanced shape-memory materials. However, it has been challenging to combine 3D-printable capability with shape-memory function into one material. Here, we report a UV-curable epoxy with excellent shape-memory performance and improved toughness as compared with traditional epoxy counterpart. The epoxy system is realized by cross-linking epoxy resin diglycidyl ether of bisphenol F (DGEBF) (“hard” segments) with toughening agent 3-ethyl-3-oxetanemethanol (TMPO) (“soft” segments), which finally creates a three-dimensional network with TMPO-co-DGEBF block structures. The fold-deploy tests show that the shape fixity ratio (R f) and the shape recovery ratio (R r) of the epoxy with 50 wt% TMPO soft segment are above 97 and 99% even after 20 cycles of testing, respectively. In addition to bringing shape-memory performance, the toughness of the epoxy system is notably improved by the TMPO soft segments. This study provides a very promising epoxy system for 3D-printable shape-memory materials.

Journal

Journal of Materials ScienceSpringer Journals

Published: Jun 6, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off