A unified framework for approximate dictionary-based entity extraction

A unified framework for approximate dictionary-based entity extraction Dictionary-based entity extraction identifies predefined entities (e.g., person names or locations) from documents. A recent trend for improving extraction recall is to support approximate entity extraction, which finds all substrings from documents that approximately match entities in a given dictionary. Existing methods to address this problem support either token-based similarity (e.g., Jaccard Similarity ) or character-based dissimilarity (e.g., Edit Distance ). It calls for a unified method to support various similarity/dissimilarity functions, since a unified method can reduce the programing efforts, the hardware requirements, and the manpower. In this paper, we propose a unified framework to support various similarity/dissimilarity functions, such as jaccard similarity, cosine similarity, dice similarity, edit similarity, and edit distance. Since many real-world applications have high-performance requirement for approximate entity extraction on data streams (e.g., Twitter), we focus on devising efficient algorithms to achieve high performance. We find that many substrings in documents have overlaps, and we can utilize the shared computation across the overlaps to avoid unnecessary redundant computation. To this end, we propose efficient filtering algorithms and develop effective pruning techniques. Experimental results show our method achieves high performance and outperforms state-of-the-art studies significantly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

A unified framework for approximate dictionary-based entity extraction

Loading next page...
 
/lp/springer_journal/a-unified-framework-for-approximate-dictionary-based-entity-extraction-hL18wE9vEZ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-014-0367-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial