A unified approach to ranking in probabilistic databases

A unified approach to ranking in probabilistic databases Ranking is a fundamental operation in data analysis and decision support and plays an even more crucial role if the dataset being explored exhibits uncertainty. This has led to much work in understanding how to rank the tuples in a probabilistic dataset in recent years. In this article, we present a unified approach to ranking and top- k query processing in probabilistic databases by viewing it as a multi-criterion optimization problem and by deriving a set of features that capture the key properties of a probabilistic dataset that dictate the ranked result. We contend that a single, specific ranking function may not suffice for probabilistic databases, and we instead propose two parameterized ranking functions , called PRF ω and PRF e , that generalize or can approximate many of the previously proposed ranking functions. We present novel generating functions -based algorithms for efficiently ranking large datasets according to these ranking functions, even if the datasets exhibit complex correlations modeled using probabilistic and/xor trees or Markov networks . We further propose that the parameters of the ranking function be learned from user preferences, and we develop an approach to learn those parameters. Finally, we present a comprehensive experimental study that illustrates the effectiveness of our parameterized ranking functions, especially PRF e , at approximating other ranking functions and the scalability of our proposed algorithms for exact or approximate ranking. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

A unified approach to ranking in probabilistic databases

Loading next page...
 
/lp/springer_journal/a-unified-approach-to-ranking-in-probabilistic-databases-d1ohzBQ4xB
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-011-0220-3
Publisher site
See Article on Publisher Site

Abstract

Ranking is a fundamental operation in data analysis and decision support and plays an even more crucial role if the dataset being explored exhibits uncertainty. This has led to much work in understanding how to rank the tuples in a probabilistic dataset in recent years. In this article, we present a unified approach to ranking and top- k query processing in probabilistic databases by viewing it as a multi-criterion optimization problem and by deriving a set of features that capture the key properties of a probabilistic dataset that dictate the ranked result. We contend that a single, specific ranking function may not suffice for probabilistic databases, and we instead propose two parameterized ranking functions , called PRF ω and PRF e , that generalize or can approximate many of the previously proposed ranking functions. We present novel generating functions -based algorithms for efficiently ranking large datasets according to these ranking functions, even if the datasets exhibit complex correlations modeled using probabilistic and/xor trees or Markov networks . We further propose that the parameters of the ranking function be learned from user preferences, and we develop an approach to learn those parameters. Finally, we present a comprehensive experimental study that illustrates the effectiveness of our parameterized ranking functions, especially PRF e , at approximating other ranking functions and the scalability of our proposed algorithms for exact or approximate ranking.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off