A Unified Approach to Nonlinear Transformation Materials

A Unified Approach to Nonlinear Transformation Materials The advances in geometric approaches to optical devices due to transformation optics has led to the development of cloaks, concentrators, and other devices. It has also been shown that transformation optics can be used to gravitational fields from general relativity. However, the technique is currently constrained to linear devices, as a consistent approach to nonlinearity (including both the case of a nonlinear background medium and a nonlinear transformation) remains an open question. Here we show that nonlinearity can be incorporated into transformation optics in a consistent way. We use this to illustrate a number of novel effects, including cloaking an optical soliton, modeling nonlinear solutions to Einstein’s field equations, controlling transport in a Debye solid, and developing a set of constitutive to relations for relativistic cloaks in arbitrary nonlinear backgrounds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

A Unified Approach to Nonlinear Transformation Materials

Loading next page...
 
/lp/springer_journal/a-unified-approach-to-nonlinear-transformation-materials-2D0cqeb8wJ
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-22215-x
Publisher site
See Article on Publisher Site

Abstract

The advances in geometric approaches to optical devices due to transformation optics has led to the development of cloaks, concentrators, and other devices. It has also been shown that transformation optics can be used to gravitational fields from general relativity. However, the technique is currently constrained to linear devices, as a consistent approach to nonlinearity (including both the case of a nonlinear background medium and a nonlinear transformation) remains an open question. Here we show that nonlinearity can be incorporated into transformation optics in a consistent way. We use this to illustrate a number of novel effects, including cloaking an optical soliton, modeling nonlinear solutions to Einstein’s field equations, controlling transport in a Debye solid, and developing a set of constitutive to relations for relativistic cloaks in arbitrary nonlinear backgrounds.

Journal

Scientific ReportsSpringer Journals

Published: Mar 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off