A two-way FSI analysis of multiphase flow in hydrodynamic journal bearing with cavitation

A two-way FSI analysis of multiphase flow in hydrodynamic journal bearing with cavitation This work deals with a study of a three-dimensional CFD analysis and multi-phase flow phenomena for hydrodynamic journal bearing with integrated cavitation. The simulations are carried out considering the realistic bearing deformations by two-way fluid–structure interactions (FSI) along with cavitation using ANSYS®Workbench software. The design optimization module is used to generate the optimized solution of the attitude angle and eccentricity for the combination of operating speed and load. Bearings with and without cavitation are investigated. A drop in maximum pressure value is observed when cavitation is considered in the bearing. The rise in oil vapor distribution is noted with an increase in shaft speed which lowers the magnitude of the pressure build up in the bearing. The bearing deformations are analyzed numerically and found increasing with an increase in shaft speed. The experimental data obtained for pressure distribution showed good agreement with numerical data along with a considerable reduction in computation time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

A two-way FSI analysis of multiphase flow in hydrodynamic journal bearing with cavitation

Loading next page...
 
/lp/springer_journal/a-two-way-fsi-analysis-of-multiphase-flow-in-hydrodynamic-journal-WTyWSPuo7j
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
D.O.I.
10.1007/s40430-017-0750-8
Publisher site
See Article on Publisher Site

Abstract

This work deals with a study of a three-dimensional CFD analysis and multi-phase flow phenomena for hydrodynamic journal bearing with integrated cavitation. The simulations are carried out considering the realistic bearing deformations by two-way fluid–structure interactions (FSI) along with cavitation using ANSYS®Workbench software. The design optimization module is used to generate the optimized solution of the attitude angle and eccentricity for the combination of operating speed and load. Bearings with and without cavitation are investigated. A drop in maximum pressure value is observed when cavitation is considered in the bearing. The rise in oil vapor distribution is noted with an increase in shaft speed which lowers the magnitude of the pressure build up in the bearing. The bearing deformations are analyzed numerically and found increasing with an increase in shaft speed. The experimental data obtained for pressure distribution showed good agreement with numerical data along with a considerable reduction in computation time.

Journal

Journal of the Brazilian Society of Mechanical Sciences and EngineeringSpringer Journals

Published: Mar 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off