A Two-Stage Approach to Differentiating Normal and Aberrant Behavior in Computer Based Testing

A Two-Stage Approach to Differentiating Normal and Aberrant Behavior in Computer Based Testing Statistical methods for identifying aberrances on psychological and educational tests are pivotal to detect flaws in the design of a test or irregular behavior of test takers. Two approaches have been taken in the past to address the challenge of aberrant behavior detection, which are (1) modeling aberrant behavior via mixture modeling methods, and (2) flagging aberrant behavior via residual based outlier detection methods. In this paper, we propose a two-stage method that is conceived of as a combination of both approaches. In the first stage, a mixture hierarchical model is fitted to the response and response time data to distinguish normal and aberrant behaviors using Markov chain Monte Carlo (MCMC) algorithm. In the second stage, a further distinction between rapid guessing and cheating behavior is made at a person level using a Bayesian residual index. Simulation results show that the two-stage method yields accurate item and person parameter estimates, as well as high true detection rate and low false detection rate, under different manipulated conditions mimicking NAEP parameters. A real data example is given in the end to illustrate the potential application of the proposed method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Psychometrika Springer Journals

A Two-Stage Approach to Differentiating Normal and Aberrant Behavior in Computer Based Testing

Loading next page...
 
/lp/springer_journal/a-two-stage-approach-to-differentiating-normal-and-aberrant-behavior-qIcKTbbZrc
Publisher
Springer US
Copyright
Copyright © 2016 by The Psychometric Society
Subject
Psychology; Psychometrics; Assessment, Testing and Evaluation; Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law; Statistical Theory and Methods
ISSN
0033-3123
eISSN
1860-0980
D.O.I.
10.1007/s11336-016-9525-x
Publisher site
See Article on Publisher Site

Abstract

Statistical methods for identifying aberrances on psychological and educational tests are pivotal to detect flaws in the design of a test or irregular behavior of test takers. Two approaches have been taken in the past to address the challenge of aberrant behavior detection, which are (1) modeling aberrant behavior via mixture modeling methods, and (2) flagging aberrant behavior via residual based outlier detection methods. In this paper, we propose a two-stage method that is conceived of as a combination of both approaches. In the first stage, a mixture hierarchical model is fitted to the response and response time data to distinguish normal and aberrant behaviors using Markov chain Monte Carlo (MCMC) algorithm. In the second stage, a further distinction between rapid guessing and cheating behavior is made at a person level using a Bayesian residual index. Simulation results show that the two-stage method yields accurate item and person parameter estimates, as well as high true detection rate and low false detection rate, under different manipulated conditions mimicking NAEP parameters. A real data example is given in the end to illustrate the potential application of the proposed method.

Journal

PsychometrikaSpringer Journals

Published: Oct 28, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off