A tunnel field-effect transistor with a graphene derivatives (COH) n -(CF) n -(CH) n three-layer quantum well with the middle (CF) n drain layer

A tunnel field-effect transistor with a graphene derivatives (COH) n -(CF) n -(CH) n three-layer... A tunnel field-effect quantum-well nanotransistor, in which the drive voltage of 0.6 V is applied to the barriers surrounding the well, and electrons are drained from the quantum well, is considered. Electrons are tunneled into the quantum well through the first half of the double-humped tunnel barrier (double heterojunction) formed by a three-layer sandwich of broad-band 2D semiconductors (graphene derivatives, such as perhydroxy graphene (COH) n , fluorographene (CF) n , and graphane (CH) n ) with sharply different levels of the bottoms of the conduction band. The middle fluorographene (CF) n layer has the lowest conduction band bottoms, which forms the quantum well with a depth of ∼3 eV and a width of ∼0.6 nm in the common tunnel potential barrier with a width of 1.8 nm and serves as a drain channel for electrons. The source and gate metallic electrodes are adjacent to the outer layers of the sandwich 2D semiconductors, i.e., perhydroxy graphene (COH) n and graphane (CH) n , respectively, forming the common gate sandwich of 20 × 20 nm2 in size. The metallic drain electron with a width of 10 nm and a potential, which is 1 V higher than that of the first (source) electrode, is adjacent to the middle fluorographene (CF) n layer, which extends outside the sandwich, being 35 nm wider than the outer 2D semiconductor layers of the inner three-layer sandwich. The gate opening potential is 0.62 V. The maximum working voltage I sd = 2 × 10−5 A. The drain off-state current is zero, and the leakage on-state current through the gate electrode is I g = I leak ∼ 10−10 A. The quantum capacitance of the transistor enables its operation at a frequency of up to 1012 Hz. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

A tunnel field-effect transistor with a graphene derivatives (COH) n -(CF) n -(CH) n three-layer quantum well with the middle (CF) n drain layer

Loading next page...
 
/lp/springer_journal/a-tunnel-field-effect-transistor-with-a-graphene-derivatives-coh-n-cf-TuPbFYTJ2v
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739714060109
Publisher site
See Article on Publisher Site

Abstract

A tunnel field-effect quantum-well nanotransistor, in which the drive voltage of 0.6 V is applied to the barriers surrounding the well, and electrons are drained from the quantum well, is considered. Electrons are tunneled into the quantum well through the first half of the double-humped tunnel barrier (double heterojunction) formed by a three-layer sandwich of broad-band 2D semiconductors (graphene derivatives, such as perhydroxy graphene (COH) n , fluorographene (CF) n , and graphane (CH) n ) with sharply different levels of the bottoms of the conduction band. The middle fluorographene (CF) n layer has the lowest conduction band bottoms, which forms the quantum well with a depth of ∼3 eV and a width of ∼0.6 nm in the common tunnel potential barrier with a width of 1.8 nm and serves as a drain channel for electrons. The source and gate metallic electrodes are adjacent to the outer layers of the sandwich 2D semiconductors, i.e., perhydroxy graphene (COH) n and graphane (CH) n , respectively, forming the common gate sandwich of 20 × 20 nm2 in size. The metallic drain electron with a width of 10 nm and a potential, which is 1 V higher than that of the first (source) electrode, is adjacent to the middle fluorographene (CF) n layer, which extends outside the sandwich, being 35 nm wider than the outer 2D semiconductor layers of the inner three-layer sandwich. The gate opening potential is 0.62 V. The maximum working voltage I sd = 2 × 10−5 A. The drain off-state current is zero, and the leakage on-state current through the gate electrode is I g = I leak ∼ 10−10 A. The quantum capacitance of the transistor enables its operation at a frequency of up to 1012 Hz.

Journal

Russian MicroelectronicsSpringer Journals

Published: Mar 4, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off