A Trust Region Method for Optimization Problem with Singular Solutions

A Trust Region Method for Optimization Problem with Singular Solutions In this paper, we propose a trust region method for minimizing a function whose Hessian matrix at the solutions may be singular. The global convergence of the method is obtained under mild conditions. Moreover, we show that if the objective function is LC 2 function, the method possesses local superlinear convergence under the local error bound condition without the requirement of isolated nonsingular solution. This is the first regularized Newton method with trust region technique which possesses local superlinear (quadratic) convergence without the assumption that the Hessian of the objective function at the solution is nonsingular. Preliminary numerical experiments show the efficiency of the method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

A Trust Region Method for Optimization Problem with Singular Solutions

Loading next page...
 
/lp/springer_journal/a-trust-region-method-for-optimization-problem-with-singular-solutions-3dStICuHGm
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Mathematics; Numerical and Computational Methods ; Mathematical Methods in Physics; Mathematical and Computational Physics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-007-9009-6
Publisher site
See Article on Publisher Site

Abstract

In this paper, we propose a trust region method for minimizing a function whose Hessian matrix at the solutions may be singular. The global convergence of the method is obtained under mild conditions. Moreover, we show that if the objective function is LC 2 function, the method possesses local superlinear convergence under the local error bound condition without the requirement of isolated nonsingular solution. This is the first regularized Newton method with trust region technique which possesses local superlinear (quadratic) convergence without the assumption that the Hessian of the objective function at the solution is nonsingular. Preliminary numerical experiments show the efficiency of the method.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Dec 1, 2007

References

  • CUTE: constrained and unconstrained testing environment
    Bongartz, I.; Conn, A.R.; Gould, N.I.M.; Toint, Ph.L.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off