A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening

A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation... The MADS-box transcription factors play essential roles in many physiological and biochemical processes of plants, especially in fruit ripening. Here, a tomato MADS-box gene, SlCMB1, was isolated. SlCMB1 expression declined with the fruit ripening from immature green to B + 7 (7 days after Breaker) fruits in the wild type (WT) and was lower in Nr and rin mutants fruits. Tomato plants with reduced SlCMB1 mRNA displayed delayed fruit ripening, reduced ethylene production and carotenoid accumulation. The ethylene production in SlCMB1-RNAi fruits decreased by approximately 50% as compared to WT. The transcripts of ethylene biosynthesis genes (ACS2, ACS4, ACO1 and ACO3), ethylene-responsive genes (E4, E8 and ERF1) and fruit ripening-related genes (RIN, TAGL1, FUL1, FUL2, LoxC and PE) were inhibited in SlCMB1-RNAi fruits. The carotenoid accumulation was decreased and two carotenoid synthesis-related genes (PSY1 and PDS) were down-regulated while three lycopene cyclase genes (CYCB, LCYB and LCYE) were up-regulated in transgenic fruits. Furthermore, yeast two-hybrid assay showed that SlCMB1 could interact with SlMADS-RIN, SlMADS1, SlAP2a and TAGL1, respectively. Collectively, these results indicate that SlCMB1 is a new component to the current model of regulatory network that regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening

Loading next page...
 
/lp/springer_journal/a-tomato-mads-box-protein-slcmb1-regulates-ethylene-biosynthesis-and-6ca8G85XKV
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-21672-8
Publisher site
See Article on Publisher Site

Abstract

The MADS-box transcription factors play essential roles in many physiological and biochemical processes of plants, especially in fruit ripening. Here, a tomato MADS-box gene, SlCMB1, was isolated. SlCMB1 expression declined with the fruit ripening from immature green to B + 7 (7 days after Breaker) fruits in the wild type (WT) and was lower in Nr and rin mutants fruits. Tomato plants with reduced SlCMB1 mRNA displayed delayed fruit ripening, reduced ethylene production and carotenoid accumulation. The ethylene production in SlCMB1-RNAi fruits decreased by approximately 50% as compared to WT. The transcripts of ethylene biosynthesis genes (ACS2, ACS4, ACO1 and ACO3), ethylene-responsive genes (E4, E8 and ERF1) and fruit ripening-related genes (RIN, TAGL1, FUL1, FUL2, LoxC and PE) were inhibited in SlCMB1-RNAi fruits. The carotenoid accumulation was decreased and two carotenoid synthesis-related genes (PSY1 and PDS) were down-regulated while three lycopene cyclase genes (CYCB, LCYB and LCYE) were up-regulated in transgenic fruits. Furthermore, yeast two-hybrid assay showed that SlCMB1 could interact with SlMADS-RIN, SlMADS1, SlAP2a and TAGL1, respectively. Collectively, these results indicate that SlCMB1 is a new component to the current model of regulatory network that regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening.

Journal

Scientific ReportsSpringer Journals

Published: Feb 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off