A Thiamine/H+ Antiport Mechanism for Thiamine Entry into Brush Border Membrane Vesicles from Rat Small Intestine

A Thiamine/H+ Antiport Mechanism for Thiamine Entry into Brush Border Membrane Vesicles from Rat... Outwardly oriented H+ gradients greatly enhanced thiamine transport rate in brush border membrane vesicles from duodenal and jejunal mucosa of adult Wistar rats. At a gradient pHin5:pHout7.5, thiamine uptake showed an overshoot, which at 15 sec was three times as large as the uptake observed in the absence of the gradient. Under the same conditions, the binding component of uptake accounted for only 10–13% of intravesicular transport. At the same gradient, the K m and J max values of the saturable component of the thiamine uptake curve after a 6 sec incubation time were 6.2 ± 1.4 μm and 14.9 ± 3 pmol · mg−1 protein · 6 sec−1 respectively. These values were about 3 and 5 times higher, respectively, than those recorded in the absence of H+ gradient. The saturable component of the thiamine antiport had a stoichiometric thiamine: H+ ratio of 1:1 and was inhibited by thiamine analogues, guanidine, guanidine derivatives, inhibitors of the guanidine/H+ antiport, and imipramine. Conversely, the guanidine/H+ antiport was inhibited by unlabeled thiamine and thiamine analogues; omeprazole caused an approximately fourfold increase in thiamine transport rate. In the absence of H+ gradient, changes in transmembrane electrical potential did not affect thiamine uptake. At equilibrium, the percentage membrane-bound thiamine taken up was positively correlated with the pH of the incubation medium, and increased from about 10% at pH 5 to 99% at pH 9. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

A Thiamine/H+ Antiport Mechanism for Thiamine Entry into Brush Border Membrane Vesicles from Rat Small Intestine

Loading next page...
 
/lp/springer_journal/a-thiamine-h-antiport-mechanism-for-thiamine-entry-into-brush-border-L0Fh1MENgY
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900322
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial