A thermal forming limit prediction method considering material damage for 22MnB5 sheet

A thermal forming limit prediction method considering material damage for 22MnB5 sheet Hot stamping of high-strength steel is an innovative technology to achieve automobile lightweight and guarantee security simultaneously. However, the formability of high-strength steel is still limited at elevated temperatures by the evolution of void damage inside materials. Thus, the establishment of an efficient forming limit prediction method is urgently demanded. In the present work, the Gurson-Tvergaard-Needleman (GTN) model is extended by containing Hosford anisotropic yield criterion which can characterize void damage in normal anisotropic materials. The flow behavior of matrix material 22MnB5 at different forming temperatures is simulated by the modified Norton-Hoff hardening law. And the damage-related parameters are calibrated through FEM inverse analysis. Furthermore, the prediction method of forming limit combined with void damage is realized within the framework of the Marciniak and Kuczynski (M-K) model. Meanwhile, the high-temperature Nakazima test is conducted to obtain experimental thermal forming limit diagram (TFLD). The comparison of results by theoretical prediction and experimental test shows good consistency. Based on the proposed method, the effects of temperature, void damage, initial thickness imperfection, and anisotropy on the forming limit are analyzed. The formability improved with the increasing of deformation temperature but worse for other factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

A thermal forming limit prediction method considering material damage for 22MnB5 sheet

Loading next page...
Springer London
Copyright © 2017 by Springer-Verlag London
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial