A Theoretical Study of Single-Cell Electroporation in a Microchannel

A Theoretical Study of Single-Cell Electroporation in a Microchannel Electroporation of a single cell in a microchannel was studied. The effects of electrical (e.g., strength of the electric pulse) and geometrical (e.g., microchannel height, electrode size and position) parameters on cell membrane permeabilization were investigated. The electrodes were assumed to be embedded in the walls of the microchannel; the cell was suspended between these two electrodes. By keeping the electric pulse constant, increasing the microchannel height reduces the number and the radius of the biggest nanopores, as well as the electroporated area of the cell membrane. If the width of the electrodes is bigger than the cell diameter, the transmembrane potential will be centralized and have a sinusoidal distribution around the cell if nanopores are not generated. As the width of the electrode decreases and becomes smaller than the cell diameter, the local transmembrane potential decreases; in the nonelectroporative area, the transmembrane potential distribution deviates from the sinusoidal behavior; the induced transmembrane potential also concentrates around the poles of the cell membrane (the nearest points of the cell membrane to the electrodes). During cell membrane permeabilization, the biggest nanopores are initially created at the poles and then the nanopore population expands toward the equator. The number of the created nanopores reaches its maximal value within a few microseconds; further presence of the electric pulse may not influence the number and location of the created nanopores anymore but will develop the generated nanopores. Strengthening the electric pulse intensifies the size and number of the created nanopores as well as the electroporated area on the cell membrane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

A Theoretical Study of Single-Cell Electroporation in a Microchannel

Loading next page...
 
/lp/springer_journal/a-theoretical-study-of-single-cell-electroporation-in-a-microchannel-DC0jMkVNzq
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-012-9515-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial