A thaumatin-like gene in nonclimacteric pepper fruits used as molecular marker in probing disease resistance, ripening, and sugar accumulation

A thaumatin-like gene in nonclimacteric pepper fruits used as molecular marker in probing disease... During pepper (Capsicum annuum) fruit ripening, the ripe fruit interaction with the anthracnose fungus, Colletotrichum gloeosporioides, is generally incompatible. However, the unripe fruit can interact compatibly with the fungus. A gene, designated PepTLP (for pepper thaumatin-like protein), was isolated and characterized by using mRNA differential display. The PepTLP gene encodes a protein homologous to other thaumatin-like proteins and contains 16 conserved cysteine residues and the consensus pattern of thaumatin. PepTLP gene expression is developmentally regulated during ripening. The accumulation of PepTLP mRNA and PepTLP protein in the incompatible interaction was higher than that in the compatible one. Furthermore, PepTLP gene expression was stimulated by both jasmonic acid treatment and wounding during ripening, but by wounding only in the unripe fruit. Immunolocalization studies showed that it is localized to the intercellular spaces among cortical cells. The expression of the PepTLP gene upon fungal infection was a rise from the early-breaker fruit. The development of anthracnose became significantly prevented with beginning of fruit ripening, and the sum total of sugar accumulation increased. The results suggest that the PepTLP gene can be used as a molecular marker in probing for disease resistance, ripening, and sugar accumulation in nonclimacteric pepper fruits. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A thaumatin-like gene in nonclimacteric pepper fruits used as molecular marker in probing disease resistance, ripening, and sugar accumulation

Loading next page...
 
/lp/springer_journal/a-thaumatin-like-gene-in-nonclimacteric-pepper-fruits-used-as-FBbYp0hSqK
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1014995732171
Publisher site
See Article on Publisher Site

Abstract

During pepper (Capsicum annuum) fruit ripening, the ripe fruit interaction with the anthracnose fungus, Colletotrichum gloeosporioides, is generally incompatible. However, the unripe fruit can interact compatibly with the fungus. A gene, designated PepTLP (for pepper thaumatin-like protein), was isolated and characterized by using mRNA differential display. The PepTLP gene encodes a protein homologous to other thaumatin-like proteins and contains 16 conserved cysteine residues and the consensus pattern of thaumatin. PepTLP gene expression is developmentally regulated during ripening. The accumulation of PepTLP mRNA and PepTLP protein in the incompatible interaction was higher than that in the compatible one. Furthermore, PepTLP gene expression was stimulated by both jasmonic acid treatment and wounding during ripening, but by wounding only in the unripe fruit. Immunolocalization studies showed that it is localized to the intercellular spaces among cortical cells. The expression of the PepTLP gene upon fungal infection was a rise from the early-breaker fruit. The development of anthracnose became significantly prevented with beginning of fruit ripening, and the sum total of sugar accumulation increased. The results suggest that the PepTLP gene can be used as a molecular marker in probing for disease resistance, ripening, and sugar accumulation in nonclimacteric pepper fruits.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off