A thaumatin-like gene in nonclimacteric pepper fruits used as molecular marker in probing disease resistance, ripening, and sugar accumulation

A thaumatin-like gene in nonclimacteric pepper fruits used as molecular marker in probing disease... During pepper (Capsicum annuum) fruit ripening, the ripe fruit interaction with the anthracnose fungus, Colletotrichum gloeosporioides, is generally incompatible. However, the unripe fruit can interact compatibly with the fungus. A gene, designated PepTLP (for pepper thaumatin-like protein), was isolated and characterized by using mRNA differential display. The PepTLP gene encodes a protein homologous to other thaumatin-like proteins and contains 16 conserved cysteine residues and the consensus pattern of thaumatin. PepTLP gene expression is developmentally regulated during ripening. The accumulation of PepTLP mRNA and PepTLP protein in the incompatible interaction was higher than that in the compatible one. Furthermore, PepTLP gene expression was stimulated by both jasmonic acid treatment and wounding during ripening, but by wounding only in the unripe fruit. Immunolocalization studies showed that it is localized to the intercellular spaces among cortical cells. The expression of the PepTLP gene upon fungal infection was a rise from the early-breaker fruit. The development of anthracnose became significantly prevented with beginning of fruit ripening, and the sum total of sugar accumulation increased. The results suggest that the PepTLP gene can be used as a molecular marker in probing for disease resistance, ripening, and sugar accumulation in nonclimacteric pepper fruits. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A thaumatin-like gene in nonclimacteric pepper fruits used as molecular marker in probing disease resistance, ripening, and sugar accumulation

Loading next page...
 
/lp/springer_journal/a-thaumatin-like-gene-in-nonclimacteric-pepper-fruits-used-as-FBbYp0hSqK
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1014995732171
Publisher site
See Article on Publisher Site

Abstract

During pepper (Capsicum annuum) fruit ripening, the ripe fruit interaction with the anthracnose fungus, Colletotrichum gloeosporioides, is generally incompatible. However, the unripe fruit can interact compatibly with the fungus. A gene, designated PepTLP (for pepper thaumatin-like protein), was isolated and characterized by using mRNA differential display. The PepTLP gene encodes a protein homologous to other thaumatin-like proteins and contains 16 conserved cysteine residues and the consensus pattern of thaumatin. PepTLP gene expression is developmentally regulated during ripening. The accumulation of PepTLP mRNA and PepTLP protein in the incompatible interaction was higher than that in the compatible one. Furthermore, PepTLP gene expression was stimulated by both jasmonic acid treatment and wounding during ripening, but by wounding only in the unripe fruit. Immunolocalization studies showed that it is localized to the intercellular spaces among cortical cells. The expression of the PepTLP gene upon fungal infection was a rise from the early-breaker fruit. The development of anthracnose became significantly prevented with beginning of fruit ripening, and the sum total of sugar accumulation increased. The results suggest that the PepTLP gene can be used as a molecular marker in probing for disease resistance, ripening, and sugar accumulation in nonclimacteric pepper fruits.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off