A technique for analysis of density dependence in population models

A technique for analysis of density dependence in population models The concept of density-dependent population growth is fundamental to our understanding of how populations persist. While it is generally agreed that negative density dependence must occur at high densities, the direction of density dependence may be negative (pure negative density dependence) or positive (demographic Allee effect) at low densities. In this article, we present a technique to link the direction of density dependence to generic ecological factors. This technique involves exploiting the presence of a particular bifurcation, known as a saddle-node-transcritical interaction. We first provide a method to detect this bifurcation in a given model and then demonstrate its ecological relevance using several existing mechanistic models. With a mathematical framework in place, we are able to identify scenarios in which neither a weak Allee effect nor pure negative density dependence are possible. More generally, we find conditions on parameter values that are necessary for transitions between pure negative density dependence and demographic Allee effects to occur. Keywords Density dependence · Allee effect · Population dynamics · Bifurcation · Structured models Introduction In this case, an increase in density can increase the per-capita growth rate, often because of benefits gained The influence of a population’s density on its growth rate http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Theoretical Ecology Springer Journals

A technique for analysis of density dependence in population models

Loading next page...
 
/lp/springer_journal/a-technique-for-analysis-of-density-dependence-in-population-models-iLTHSrq3ya
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Theoretical Ecology/Statistics; Plant Sciences; Zoology
ISSN
1874-1738
eISSN
1874-1746
D.O.I.
10.1007/s12080-018-0380-5
Publisher site
See Article on Publisher Site

Abstract

The concept of density-dependent population growth is fundamental to our understanding of how populations persist. While it is generally agreed that negative density dependence must occur at high densities, the direction of density dependence may be negative (pure negative density dependence) or positive (demographic Allee effect) at low densities. In this article, we present a technique to link the direction of density dependence to generic ecological factors. This technique involves exploiting the presence of a particular bifurcation, known as a saddle-node-transcritical interaction. We first provide a method to detect this bifurcation in a given model and then demonstrate its ecological relevance using several existing mechanistic models. With a mathematical framework in place, we are able to identify scenarios in which neither a weak Allee effect nor pure negative density dependence are possible. More generally, we find conditions on parameter values that are necessary for transitions between pure negative density dependence and demographic Allee effects to occur. Keywords Density dependence · Allee effect · Population dynamics · Bifurcation · Structured models Introduction In this case, an increase in density can increase the per-capita growth rate, often because of benefits gained The influence of a population’s density on its growth rate

Journal

Theoretical EcologySpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off