A systematic correlation analysis of carotenoids, chlorophyll, non-pigmented cell mass, and cell number for the blueprint of Dunaliella salina culture in a photobioreactor

A systematic correlation analysis of carotenoids, chlorophyll, non-pigmented cell mass, and cell... Microalgal carotenoids are attractive health ingredients, but their production should be optimized to improve cost-effec- tiveness. Understanding cellular physiology centered on carotenoid synthesis is the prerequisite for this work. Therefore, systematic correlation analyses were conducted among chlorophyll, carotenoids, non-pigmented cell mass, and cell number of Dunaliella salina in a specified condition over a relatively long culture time. First, an integrated correlation was performed: a temporal profile of the carotenoids was correlated with those of other factors, including chlorophyll, non-pigmented cell mass, and cell number. Pearson and Spearman correlation analyses were performed to identify linearity and monotonicity of the correlation, respectively, and then cross-correlation was executed to determine if the correlation had a time lag. Sec- ond, to understand the cellular potential of metabolism, the procedure was repeated to provide a data set composed of the specific synthesis rates of the factors or growth rate, which additionally provided kinetic correlations among the constituting components of the cell, excluding the effect of cell number. This systematic approach could generate a blueprint model that is composed of only what it needs, which could make it possible to efficiently control and optimize the process. Keywords Correlation · Cross-correlation · Dunaliella salina · Carotinoid · Microalgae Introduction Carotenoids http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bioprocess and Biosystems Engineering Springer Journals

A systematic correlation analysis of carotenoids, chlorophyll, non-pigmented cell mass, and cell number for the blueprint of Dunaliella salina culture in a photobioreactor

Loading next page...
 
/lp/springer_journal/a-systematic-correlation-analysis-of-carotenoids-chlorophyll-non-XW3cM1IsSx
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Biotechnology; Industrial and Production Engineering; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering; Food Science
ISSN
1615-7591
eISSN
1615-7605
D.O.I.
10.1007/s00449-018-1957-5
Publisher site
See Article on Publisher Site

Abstract

Microalgal carotenoids are attractive health ingredients, but their production should be optimized to improve cost-effec- tiveness. Understanding cellular physiology centered on carotenoid synthesis is the prerequisite for this work. Therefore, systematic correlation analyses were conducted among chlorophyll, carotenoids, non-pigmented cell mass, and cell number of Dunaliella salina in a specified condition over a relatively long culture time. First, an integrated correlation was performed: a temporal profile of the carotenoids was correlated with those of other factors, including chlorophyll, non-pigmented cell mass, and cell number. Pearson and Spearman correlation analyses were performed to identify linearity and monotonicity of the correlation, respectively, and then cross-correlation was executed to determine if the correlation had a time lag. Sec- ond, to understand the cellular potential of metabolism, the procedure was repeated to provide a data set composed of the specific synthesis rates of the factors or growth rate, which additionally provided kinetic correlations among the constituting components of the cell, excluding the effect of cell number. This systematic approach could generate a blueprint model that is composed of only what it needs, which could make it possible to efficiently control and optimize the process. Keywords Correlation · Cross-correlation · Dunaliella salina · Carotinoid · Microalgae Introduction Carotenoids

Journal

Bioprocess and Biosystems EngineeringSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off