A sucrose repression element in the Phaseolus vulgaris rbcS2 gene promoter resembles elements responsible for sugar stimulation of plant and mammalian genes

A sucrose repression element in the Phaseolus vulgaris rbcS2 gene promoter resembles elements... Protoplasts isolated from the primary leaves of Phaseolus vulgaris L. were used in transient expression experiments to identify promoter sequences of the P. vulgaris rbcS2 gene, encoding ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit, concerned with sucrose repression. The protoplasts supported high rates of expression of the chloramphenicol acetyl transferase reporter gene fused to 1433 bp of the rbcS2 5′ flanking sequences. Expression was repressed by 50 mM sucrose whereas that driven by control promoters was not. Assays of promoter deletions revealed that 203 bp 5′ to the transcription start site were sufficient for high rates of sucrose-repressible expression. A ―187 bp deletion supported much lower rates of expression and was not subject to sucrose repression. The ―203 to ―187 bp region contains sequences resembling elements involved in the sugar stimulation of transcription of other genes: the SURE (sucrose response element) of plant genes and the ChoRE (carbohydrate response element) of mammalian genes. A G-box (CACGTG) located at ―200 to ―205 was important for high levels of sucrose-repressible expression, since deletion of a nucleotide from this element in the context of the 1433 bp promoter gave much reduced expression. However, a modified G-box (CcCGTG) in the ―203 bp fusion and adjacent vector sequences remained functional. Measurements of rbcS and chalcone synthase (CHS) transcript levels in the protoplasts indicated that 4 mM sucrose was sufficient to repress or stimulate the respective genes. Further experiments suggested that metabolism of 6-carbon sugars is the signal for rbcS repression and CHS stimulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A sucrose repression element in the Phaseolus vulgaris rbcS2 gene promoter resembles elements responsible for sugar stimulation of plant and mammalian genes

Loading next page...
 
/lp/springer_journal/a-sucrose-repression-element-in-the-phaseolus-vulgaris-rbcs2-gene-he17jsp55I
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005950915499
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial