A study on the transmission haze and mechanical properties of highly transparent paper with different fiber species

A study on the transmission haze and mechanical properties of highly transparent paper with... Transparent paper with high transmission haze has garnered great attention due to its potential applications in light management of optoelectronics as a bulk optical material. Herein, we investigated the transmission haze and mechanical properties of transparent paper with different fiber species. The morphological dimensions of cellulose fibers (Northwood, Eucalyptus wood, Manila hemp) before and after 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) treatment were investigated in detail. The effect of fiber morphology and preparation methods on transmission haze and mechanical properties (tensile strength, Young’s modulus, bursting strength) of the resultant paper was then analyzed. The results showed that transparent paper with TEMPO-treated northern fibers possessed highest optical transmittance and transmission haze, as well as strongest mechanical strength compared to two other transparent paper. Furthermore, transparent paper prepared by solution casting exhibited higher mechanical strength, but lower transmission haze compared to paper prepared by vacuum filtration. It’s worth noting that sub-micro and nanofiber partially contributed to the transparency and mechanical properties of the resulting transparent paper. This work sheds light on the preparation of highly transparent and strong paper with excellent light scattering behavior for manipulating light behavior of optoelectronics as a bulk optical material. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellulose Springer Journals

A study on the transmission haze and mechanical properties of highly transparent paper with different fiber species

Loading next page...
 
/lp/springer_journal/a-study-on-the-transmission-haze-and-mechanical-properties-of-highly-ipBbkEgNHM
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Chemistry; Bioorganic Chemistry; Physical Chemistry; Organic Chemistry; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials; Sustainable Development
ISSN
0969-0239
eISSN
1572-882X
D.O.I.
10.1007/s10570-018-1663-0
Publisher site
See Article on Publisher Site

Abstract

Transparent paper with high transmission haze has garnered great attention due to its potential applications in light management of optoelectronics as a bulk optical material. Herein, we investigated the transmission haze and mechanical properties of transparent paper with different fiber species. The morphological dimensions of cellulose fibers (Northwood, Eucalyptus wood, Manila hemp) before and after 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) treatment were investigated in detail. The effect of fiber morphology and preparation methods on transmission haze and mechanical properties (tensile strength, Young’s modulus, bursting strength) of the resultant paper was then analyzed. The results showed that transparent paper with TEMPO-treated northern fibers possessed highest optical transmittance and transmission haze, as well as strongest mechanical strength compared to two other transparent paper. Furthermore, transparent paper prepared by solution casting exhibited higher mechanical strength, but lower transmission haze compared to paper prepared by vacuum filtration. It’s worth noting that sub-micro and nanofiber partially contributed to the transparency and mechanical properties of the resulting transparent paper. This work sheds light on the preparation of highly transparent and strong paper with excellent light scattering behavior for manipulating light behavior of optoelectronics as a bulk optical material.

Journal

CelluloseSpringer Journals

Published: Feb 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off