A study on the tool wear of PCD micro end mills in ductile milling of ZrO2 ceramics

A study on the tool wear of PCD micro end mills in ductile milling of ZrO2 ceramics This paper investigates the performance of self-developed polycrystalline diamond (PCD) micro end mills in ductile milling of fully sintered zirconia ceramic. Experiments are conducted on a precision milling machine center. The influence of cutting parameters, including axial depth of cut (a p), feed per tooth (f z), and the PCD particle size on the achievable surface quality is studied by experimental design. Further tests are also conducted to study the tool wear during a milling process. The tool wear characteristics are observed and tool wear mechanism is discussed. The results show that average surface roughness Ra below 70 nm can be achieved on the machined samples. The factor of feed per tooth affects Ra value the most. The maximum tool tip wear VC can be used to indicate the severity of tool wear. According to the results, the PCD micro end mill with bigger particle size possesses longer tool life. The mainly tool wear mechanism of the PCD micro end mill in ductile milling ceramics is the periodic peeling off of diamond particles during the interaction between the workpiece and end mill. Zirconia ceramics can deform in a plastic way and adhere to the cutting edge in the milling process. The adhesion and spalling of zirconia would induce the peeling off of PCD particles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

A study on the tool wear of PCD micro end mills in ductile milling of ZrO2 ceramics

Loading next page...
 
/lp/springer_journal/a-study-on-the-tool-wear-of-pcd-micro-end-mills-in-ductile-milling-of-6ZraEI0IVB
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0242-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial