A study on the characterization and stability of rhenium(III) chloride-incorporated liposomes

A study on the characterization and stability of rhenium(III) chloride-incorporated liposomes Nanoliposomes are important carriers capable of packaging drugs for various delivery applications through passive targeting tumor sites by enhancing permeability and retention effect. Radiolabeled liposomes have potential applications in radiotherapy and diagnostic imaging. However, the physico-chemical instability of liposomes during manufacturing and storage limits their extensive application. Therefore, considerable numbers of studies have been made on the stability of liposomes over the last few years in order to overcome this problem. In this study, we attempted to prepare polymer-coated liposomes using water-soluble chitosan in order to enhance the stability of rhenium(III) chloride-incorporated liposomes. They were characterized by an electrophoretic light-scattering spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), UV–Vis spectrometer, and phase-contrast microscopy. The chitosan-coated liposomes are spherical and the particle size is about 800–850 nm. Incorporation of chitosan into the liposome bilayer decreased rhenium(III) chloride release from the liposome due to an increased rigidity of the liposome membrane structure. Chitosan-coated liposomes showed a higher stability compared with the stability of non-coated liposomes. The release characteristics of rhenium(III) chloride encapsulated in the liposome were taken as a measure of stability of the liposome membrane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

A study on the characterization and stability of rhenium(III) chloride-incorporated liposomes

Loading next page...
 
/lp/springer_journal/a-study-on-the-characterization-and-stability-of-rhenium-iii-chloride-qLFrC5SnDt
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0174-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial