A study on the characteristics of FSW tool shapes based on CFD analysis

A study on the characteristics of FSW tool shapes based on CFD analysis In this study, computational fluid dynamics (CFD) was used to analyze the effect of tool shapes in friction stir welding (FSW). In FSW, a tool moves and rotates simultaneously so the interface between the tool and workpiece is changed at every time step. Frictional heat occurs at this interface, and in order to apply this heat, the interface should be tracked. A new interface tracking algorithm, which is applicable to any tool shape, was introduced to track the interface. Furthermore, an average area concept was used to calculate the interface area in each interface cell. This algorithm was applied to three tool shapes: cylinder, screw, and tap shapes. To validate the model, friction stir spot welding (FSSW) was performed for the cylinder type, and FSW was performed for the tap type. Temperature and torque history were compared with the experimental results. With the suggested algorithm, the velocity and viscosity distributions near the tool and the flow pattern obtained using a particle tracking method were used to analyze the characteristics of the tool shapes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Welding in the World Springer Journals

A study on the characteristics of FSW tool shapes based on CFD analysis

Loading next page...
 
/lp/springer_journal/a-study-on-the-characteristics-of-fsw-tool-shapes-based-on-cfd-vp0xr5wVMo
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by International Institute of Welding
Subject
Materials Science; Metallic Materials; Continuum Mechanics and Mechanics of Materials; Theoretical and Applied Mechanics
ISSN
0043-2288
eISSN
1878-6669
D.O.I.
10.1007/s40194-017-0478-1
Publisher site
See Article on Publisher Site

Abstract

In this study, computational fluid dynamics (CFD) was used to analyze the effect of tool shapes in friction stir welding (FSW). In FSW, a tool moves and rotates simultaneously so the interface between the tool and workpiece is changed at every time step. Frictional heat occurs at this interface, and in order to apply this heat, the interface should be tracked. A new interface tracking algorithm, which is applicable to any tool shape, was introduced to track the interface. Furthermore, an average area concept was used to calculate the interface area in each interface cell. This algorithm was applied to three tool shapes: cylinder, screw, and tap shapes. To validate the model, friction stir spot welding (FSSW) was performed for the cylinder type, and FSW was performed for the tap type. Temperature and torque history were compared with the experimental results. With the suggested algorithm, the velocity and viscosity distributions near the tool and the flow pattern obtained using a particle tracking method were used to analyze the characteristics of the tool shapes.

Journal

Welding in the WorldSpringer Journals

Published: May 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off