A study of thermodynamic stability of oxide phases in heating multicomponent ceramic binders

A study of thermodynamic stability of oxide phases in heating multicomponent ceramic binders A computer simulation of the thermodynamic stability of phases in firing ceramic silicate binders in the SiO2-A12O3-B2O3-K2O-Na2O system for abrasive tools based on grained normal electrocorundum is described. The thermodynamic data for the computation are chosen from the HSC 203 data base of the Outokumpu concern and TAPP of the E. S. Microwave Inc. It is established that when the binder (67.73% SiO2,20.0% A12O3,5.47% B2O3, 5.78% K2O,2.84% Na2O with CaO, MgO and Fe2O3 impurity oxides, the remainder TiO2) is fired at 1250°C, the most stable phases bear potassium (KAlSi3O3 and KAlSi2O6), the amount of the sodium-bearing phases diminishes substantially after 900–1100°C with only the Na2O · A12O3 · 2SiO2 phase remaining stable. This seems to explain the fact that the proportion of K2O to Na2O in feldspar pegmatites and ceramic binders for abrasion tools is regulated by standards. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Refractories and Industrial Ceramics Springer Journals

A study of thermodynamic stability of oxide phases in heating multicomponent ceramic binders

Loading next page...
 
/lp/springer_journal/a-study-of-thermodynamic-stability-of-oxide-phases-in-heating-ALgLdLBSpH
Publisher
Springer US
Copyright
Copyright © 1999 by Kluwer Academic/Plenum Publishers
Subject
Chemistry; Characterization and Evaluation of Materials; Materials Science; Ceramics, Glass, Composites, Natural Methods
ISSN
1083-4877
eISSN
1573-9139
D.O.I.
10.1007/BF02765083
Publisher site
See Article on Publisher Site

Abstract

A computer simulation of the thermodynamic stability of phases in firing ceramic silicate binders in the SiO2-A12O3-B2O3-K2O-Na2O system for abrasive tools based on grained normal electrocorundum is described. The thermodynamic data for the computation are chosen from the HSC 203 data base of the Outokumpu concern and TAPP of the E. S. Microwave Inc. It is established that when the binder (67.73% SiO2,20.0% A12O3,5.47% B2O3, 5.78% K2O,2.84% Na2O with CaO, MgO and Fe2O3 impurity oxides, the remainder TiO2) is fired at 1250°C, the most stable phases bear potassium (KAlSi3O3 and KAlSi2O6), the amount of the sodium-bearing phases diminishes substantially after 900–1100°C with only the Na2O · A12O3 · 2SiO2 phase remaining stable. This seems to explain the fact that the proportion of K2O to Na2O in feldspar pegmatites and ceramic binders for abrasion tools is regulated by standards.

Journal

Refractories and Industrial CeramicsSpringer Journals

Published: Nov 23, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off