A Study of Path Protection in Large-Scale Optical Networks

A Study of Path Protection in Large-Scale Optical Networks We consider the problem of designing a network of optical cross-connects (OXCs) which provides end-to-end lightpath services to large numbers of client nodes, under the requirement that the network will survive any single-link failure. Our main objective is to quantify the additional resource requirements of implementing path protection schemes over a network with no survivability properties. To this end, we present heuristic routing and wavelength assignment algorithms for dedicated path protection and two variants of shared path protection, and integrate them into the physical and logical topology design framework we developed in an earlier study. We apply our heuristics to networks with up to 1000 client nodes, with a number of lightpaths that is an order of magnitude greater than the number of clients, and for a wide range of values for system parameters such as the number of wavelengths per fiber, the number of optical transceivers per client node, and the number of ports per OXC. Our results provide insight into the relative resource requirements of dedicated and shared path protection schemes. We also find that, using shared path protection schemes, it is possible to build cost-effective survivable networks that provide rich connectivity among client nodes with only a modest additional amount of resources over a network with no survivability properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A Study of Path Protection in Large-Scale Optical Networks

Loading next page...
 
/lp/springer_journal/a-study-of-path-protection-in-large-scale-optical-networks-eZ5Fq8l0At
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1023/B:PNET.0000026891.50610.48
Publisher site
See Article on Publisher Site

Abstract

We consider the problem of designing a network of optical cross-connects (OXCs) which provides end-to-end lightpath services to large numbers of client nodes, under the requirement that the network will survive any single-link failure. Our main objective is to quantify the additional resource requirements of implementing path protection schemes over a network with no survivability properties. To this end, we present heuristic routing and wavelength assignment algorithms for dedicated path protection and two variants of shared path protection, and integrate them into the physical and logical topology design framework we developed in an earlier study. We apply our heuristics to networks with up to 1000 client nodes, with a number of lightpaths that is an order of magnitude greater than the number of clients, and for a wide range of values for system parameters such as the number of wavelengths per fiber, the number of optical transceivers per client node, and the number of ports per OXC. Our results provide insight into the relative resource requirements of dedicated and shared path protection schemes. We also find that, using shared path protection schemes, it is possible to build cost-effective survivable networks that provide rich connectivity among client nodes with only a modest additional amount of resources over a network with no survivability properties.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 20, 2004

References

  • Static versus dynamic establishment of protection paths in WDM networks
    Anand, V.; Qiao, C.
  • Topology design and upgrade of an optical network by bottleneck-cut identification
    Zhu, K.; Sahasrabuddhe, L.; Mukherjee, B.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off