A study of groundwater irrigation water quality in south-central Bangladesh: a geo-statistical model approach using GIS and multivariate statistics

A study of groundwater irrigation water quality in south-central Bangladesh: a geo-statistical... Southern Bangladesh’s irrigation and drinking water is threatened by saline intrusion. This study aimed to establish an irrigation water quality index (IWQI) using a geostatistical model and multivariate indices in Gopalganj district, south-central Bangladesh. Groundwater samples were taken randomly (different depths) in two seasons (wet-monsoon and dry-monsoon). Hydrochemical analysis revealed groundwater in this area was neutral to slightly alkaline and dominating cations were Na+, Mg2+, and Ca2+ along with major anions Cl− and HCO3 −. Principal component analysis and Gibbs plot helped explain possible geochemical processes in the aquifer. The irrigation water evaluation indices showed: electrical conductivity (EC) >750 µS/cm, moderate to extreme saline; sodium adsorption ratio (SAR), excellent to doubtful; total hardness (TH), moderate to very hard; residual sodium bicarbonate, safe to marginal; Kelly’s ratio >1; soluble sodium percentage (SSP), fair to poor; magnesium adsorption ratio, harmful for soil; and IWQI, moderate to suitable. In addition, the best fitted semivariogram for IWQI, EC, SAR, SSP, and TH confirmed that most parameters had strong spatial dependence and others had moderate to weak spatial dependence. This variation might be due to the different origin/sources of major contributing ions along with the influence of variable river flow and small anthropogenic contributions. Furthermore, the spatial distribution maps for IWQI, EC, SSP, and TH during both seasons confirmed the influence of salinity from the sea; low-flow in the major river system was the driving factor of overall groundwater quality in the study area. These findings may contribute to management of irrigation and/or drinking water in regions with similar groundwater problems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chinese Journal of Geochemistry Springer Journals

A study of groundwater irrigation water quality in south-central Bangladesh: a geo-statistical model approach using GIS and multivariate statistics

Loading next page...
 
/lp/springer_journal/a-study-of-groundwater-irrigation-water-quality-in-south-central-05euy1Wl4t
Publisher
Science Press
Copyright
Copyright © 2017 by Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geochemistry
ISSN
1000-9426
eISSN
2365-7499
D.O.I.
10.1007/s11631-017-0201-3
Publisher site
See Article on Publisher Site

Abstract

Southern Bangladesh’s irrigation and drinking water is threatened by saline intrusion. This study aimed to establish an irrigation water quality index (IWQI) using a geostatistical model and multivariate indices in Gopalganj district, south-central Bangladesh. Groundwater samples were taken randomly (different depths) in two seasons (wet-monsoon and dry-monsoon). Hydrochemical analysis revealed groundwater in this area was neutral to slightly alkaline and dominating cations were Na+, Mg2+, and Ca2+ along with major anions Cl− and HCO3 −. Principal component analysis and Gibbs plot helped explain possible geochemical processes in the aquifer. The irrigation water evaluation indices showed: electrical conductivity (EC) >750 µS/cm, moderate to extreme saline; sodium adsorption ratio (SAR), excellent to doubtful; total hardness (TH), moderate to very hard; residual sodium bicarbonate, safe to marginal; Kelly’s ratio >1; soluble sodium percentage (SSP), fair to poor; magnesium adsorption ratio, harmful for soil; and IWQI, moderate to suitable. In addition, the best fitted semivariogram for IWQI, EC, SAR, SSP, and TH confirmed that most parameters had strong spatial dependence and others had moderate to weak spatial dependence. This variation might be due to the different origin/sources of major contributing ions along with the influence of variable river flow and small anthropogenic contributions. Furthermore, the spatial distribution maps for IWQI, EC, SSP, and TH during both seasons confirmed the influence of salinity from the sea; low-flow in the major river system was the driving factor of overall groundwater quality in the study area. These findings may contribute to management of irrigation and/or drinking water in regions with similar groundwater problems.

Journal

Chinese Journal of GeochemistrySpringer Journals

Published: Jul 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off