A Statistical Classifier to Support Diagnose Meningitis in Less Developed Areas of Brazil

A Statistical Classifier to Support Diagnose Meningitis in Less Developed Areas of Brazil This paper describes the development of statistical classifiers to help diagnose meningococcal meningitis, i.e. the most sever, infectious and deadliest type of this disease. The goal is to find a mechanism able to determine whether a patient has this type of meningitis from a set of symptoms that can be directly observed in the earliest stages of this pathology. Currently, in Brazil, a country that is heavily affected by meningitis, all suspected cases require immediate hospitalization and the beginning of a treatment with invasive tests and medicines. This procedure, therefore, entails expensive treatments unaffordable in less developed regions. For this purpose, we have gathered together a dataset of 22,602 records of suspected meningitis cases from the Brazilian state of Bahia. Seven classification techniques have been applied from input data of nine symptoms and other information about the patient such as age, sex and the area they live in, and a 10 cross-fold validation has been performed. Results show that the techniques applied are suitable for diagnosing the meningococcal meningitis. Several indexes, such as precision, recall or ROC area, have been computed to show the accuracy of the models. All of them provide good results, but the best corresponds to the J48 classifier with a precision of 0.942 and a ROC area over 0.95. These results indicate that our model can indeed help lead to a non-invasive and early diagnosis of this pathology. This is especially useful in less developed areas, where the epidemiologic risk is usually high and medical expenses, sometimes, unaffordable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Systems Springer Journals

A Statistical Classifier to Support Diagnose Meningitis in Less Developed Areas of Brazil

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media, LLC
Medicine & Public Health; Health Informatics; Health Informatics; Statistics for Life Sciences, Medicine, Health Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial