A Spatio-Temporal Autoregressive Model for Multi-Unit Residential Market Analysis*

A Spatio-Temporal Autoregressive Model for Multi-Unit Residential Market Analysis* By splitting the spatial effects into building and neighborhood effects, this paper develops a two order spatio-temporal autoregressive model to deal with both the spatio-temporal autocorrelations and the heteroscedasticity problem arising from the nature of multi-unit residential real estate data. The empirical results based on 54,282 condominium transactions in Singapore between 1990 and 1999 show that in the multi-unit residential market, a two order spatio-temporal autoregressive model incorporates more spatial information into the model, thus outperforming the models originally developed in the market for single-family homes. This implies that the specification of a spatio-temporal model should consider the physical market structure as it affects the spatial process. It is found that the Bayesian estimation method can produce more robust coefficients by efficiently detecting and correcting heteroscedasticity, indicating that the Bayesian estimation method is more suitable for estimating a real estate hedonic model than the conventional OLS estimation. It is also found that there is a trade off between the heteroscedastic robustness and the incorporation of spatial information into the model estimation. The model is then used to construct building-specific price indices. The results show that the price indices for different condominiums and the buildings within a condominium do behave differently, especially when compared with the aggregate market indices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Real Estate Finance and Economics Springer Journals

A Spatio-Temporal Autoregressive Model for Multi-Unit Residential Market Analysis*

Loading next page...
 
/lp/springer_journal/a-spatio-temporal-autoregressive-model-for-multi-unit-residential-YzT1VCKMDa
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer Science + Business Media, Inc.
Subject
Economics; Regional/Spatial Science; Financial Services
ISSN
0895-5638
eISSN
1573-045X
D.O.I.
10.1007/s11146-005-1370-0
Publisher site
See Article on Publisher Site

Abstract

By splitting the spatial effects into building and neighborhood effects, this paper develops a two order spatio-temporal autoregressive model to deal with both the spatio-temporal autocorrelations and the heteroscedasticity problem arising from the nature of multi-unit residential real estate data. The empirical results based on 54,282 condominium transactions in Singapore between 1990 and 1999 show that in the multi-unit residential market, a two order spatio-temporal autoregressive model incorporates more spatial information into the model, thus outperforming the models originally developed in the market for single-family homes. This implies that the specification of a spatio-temporal model should consider the physical market structure as it affects the spatial process. It is found that the Bayesian estimation method can produce more robust coefficients by efficiently detecting and correcting heteroscedasticity, indicating that the Bayesian estimation method is more suitable for estimating a real estate hedonic model than the conventional OLS estimation. It is also found that there is a trade off between the heteroscedastic robustness and the incorporation of spatial information into the model estimation. The model is then used to construct building-specific price indices. The results show that the price indices for different condominiums and the buildings within a condominium do behave differently, especially when compared with the aggregate market indices.

Journal

The Journal of Real Estate Finance and EconomicsSpringer Journals

Published: Aug 17, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off