A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition

A spatial-frequency-temporal optimized feature sparse representation-based classification method... Effective feature extraction and classification methods are of great importance for motor imagery (MI)-based brain–computer interface (BCI) systems. The common spatial pattern (CSP) algorithm is a widely used feature extraction method for MI-based BCIs. In this work, we propose a novel spatial-frequency-temporal optimized feature sparse representation-based classification method. Optimal channels are selected based on relative entropy criteria. Significant CSP features on frequency-temporal domains are selected automatically to generate a column vector for sparse representation-based classification (SRC). We analyzed the performance of the new method on two public EEG datasets, namely BCI competition III dataset IVa which has five subjects and BCI competition IV dataset IIb which has nine subjects. Compared to the performance offered by the existing SRC method, the proposed method achieves average classification accuracy improvements of 21.568 and 14.38% for BCI competition III dataset IVa and BCI competition IV dataset IIb, respectively. Furthermore, our approach also shows better classification performance when compared to other competing methods for both datasets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Medical & Biological Engineering & Computing Springer Journals

A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition

Loading next page...
 
/lp/springer_journal/a-spatial-frequency-temporal-optimized-feature-sparse-representation-AdUkiSblaa
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by International Federation for Medical and Biological Engineering
Subject
Biomedicine; Human Physiology; Biomedical Engineering; Imaging / Radiology; Computer Applications
ISSN
0140-0118
eISSN
1741-0444
D.O.I.
10.1007/s11517-017-1622-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial