A space decomposition scheme for maximum eigenvalue functions and its applications

A space decomposition scheme for maximum eigenvalue functions and its applications In this paper, we study nonlinear optimization problems involving eigenvalues of symmetric matrices. One of the difficulties in solving these problems is that the eigenvalue functions are not differentiable when the multiplicity of the function is not one. We apply the $${\mathcal {U}}$$ U -Lagrangian theory to analyze the largest eigenvalue function of a convex matrix-valued mapping which extends the corresponding results for linear mapping in the literature. We also provides the formula of first-and second-order derivatives of the $${\mathcal {U}}$$ U -Lagrangian under mild assumptions. These theoretical results provide us new second-order information about the largest eigenvalue function along a suitable smooth manifold, and leads to a new algorithmic framework for analyzing the underlying optimization problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Methods of Operations Research Springer Journals

A space decomposition scheme for maximum eigenvalue functions and its applications

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Mathematics; Calculus of Variations and Optimal Control; Optimization; Operations Research/Decision Theory; Business and Management, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial