A Sortase A-Immobilized Mesoporous Hollow Carbon Sphere-Based Biosensor for Detection of Gram-Positive Bacteria

A Sortase A-Immobilized Mesoporous Hollow Carbon Sphere-Based Biosensor for Detection of... A sensor based on mesoporous carbon materials immobilized with sortase A (SrtA) for determination of Staphylococcus aureus (S. aureus) is reported. To prepare the biosensor, we first synthesized carboxyl-functionalized mesoporous hollow carbon spheres, then applied them as carriers for immobilization of SrtA. Based on the catalytic mechanism of SrtA, a highly sensitive, inexpensive, and rapid method was developed for S. aureus detection. The sensor showed a linear response in the bacterial concentration range of 0.125 × 102 colony-forming units (CFU) mL−1 to 2.5 × 102 CFU mL−1, with detection limit as low as 9.0 CFU mL−1. The method was successfully used for quantitative detection of S. aureus in whole milk samples, giving results similar to experimental results obtained from the plate counting method. This biosensor could also be used to detect other Gram-positive bacteria that secrete SrtA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Electronic Materials Springer Journals

A Sortase A-Immobilized Mesoporous Hollow Carbon Sphere-Based Biosensor for Detection of Gram-Positive Bacteria

Loading next page...
 
/lp/springer_journal/a-sortase-a-immobilized-mesoporous-hollow-carbon-sphere-based-L0pemCWC4V
Publisher
Springer US
Copyright
Copyright © 2018 by The Minerals, Metals & Materials Society
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials; Electronics and Microelectronics, Instrumentation; Solid State Physics
ISSN
0361-5235
eISSN
1543-186X
D.O.I.
10.1007/s11664-018-6308-4
Publisher site
See Article on Publisher Site

Abstract

A sensor based on mesoporous carbon materials immobilized with sortase A (SrtA) for determination of Staphylococcus aureus (S. aureus) is reported. To prepare the biosensor, we first synthesized carboxyl-functionalized mesoporous hollow carbon spheres, then applied them as carriers for immobilization of SrtA. Based on the catalytic mechanism of SrtA, a highly sensitive, inexpensive, and rapid method was developed for S. aureus detection. The sensor showed a linear response in the bacterial concentration range of 0.125 × 102 colony-forming units (CFU) mL−1 to 2.5 × 102 CFU mL−1, with detection limit as low as 9.0 CFU mL−1. The method was successfully used for quantitative detection of S. aureus in whole milk samples, giving results similar to experimental results obtained from the plate counting method. This biosensor could also be used to detect other Gram-positive bacteria that secrete SrtA.

Journal

Journal of Electronic MaterialsSpringer Journals

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off