A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield

A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield The eukaryotic pre-replicative complex (Pre-RC), including heterohexameric minichromosome maintenance (MCM2-7) proteins, ensures that the DNA in genome is replicated only once per cell division cycle. The MCMs provide DNA unwinding function during the DNA replication. Since MCM proteins play essential role in cell division and most likely are affected during stress conditions therefore their overexpression in plants may help in stress tolerance. But the role of MCMs in abiotic stress tolerance in plants has not been reported so far. In this study we report that: a) the MCM6 transcript is upregulated in pea plant in response to high salinity and cold stress and not with ABA, drought and heat stress; b) MCM6 overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in tobacco plants confers salinity tolerance. The T1 transgenics plants were able to grow to maturity and set normal viable seeds under continuous salinity stress, without yield penalty. It was observed that in salt-grown T1 transgenic plants the Na+ ions is mostly accumulated in mature leaves and not in seeds of T1 transgenic lines as compared with the wild-type (WT) plants. T1 transgenic plants exhibited better growth status under salinity stress conditions in comparison to WT plants. Furthermore, the T1 transgenic plants maintained significantly higher levels of leaf chlorophyll content, net photosynthetic rate and therefore higher dry matter accumulation and yield with 200 mM NaCl as compared to the WT plants. Tolerance index data showed better salt tolerance potential of T1 transgenic plants in comparison to WT. These findings provide first direct evidence that overexpression of single subunit MCM6 confers salinity stress tolerance without yield loss. The possible mechanism of salinity tolerance is discussed. These findings suggest that DNA replication machinery can be exploited for promoting stress tolerance in crop plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield

Loading next page...
 
/lp/springer_journal/a-single-subunit-mcm6-from-pea-promotes-salinity-stress-tolerance-aqNCmmLEmv
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9758-0
Publisher site
See Article on Publisher Site

Abstract

The eukaryotic pre-replicative complex (Pre-RC), including heterohexameric minichromosome maintenance (MCM2-7) proteins, ensures that the DNA in genome is replicated only once per cell division cycle. The MCMs provide DNA unwinding function during the DNA replication. Since MCM proteins play essential role in cell division and most likely are affected during stress conditions therefore their overexpression in plants may help in stress tolerance. But the role of MCMs in abiotic stress tolerance in plants has not been reported so far. In this study we report that: a) the MCM6 transcript is upregulated in pea plant in response to high salinity and cold stress and not with ABA, drought and heat stress; b) MCM6 overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in tobacco plants confers salinity tolerance. The T1 transgenics plants were able to grow to maturity and set normal viable seeds under continuous salinity stress, without yield penalty. It was observed that in salt-grown T1 transgenic plants the Na+ ions is mostly accumulated in mature leaves and not in seeds of T1 transgenic lines as compared with the wild-type (WT) plants. T1 transgenic plants exhibited better growth status under salinity stress conditions in comparison to WT plants. Furthermore, the T1 transgenic plants maintained significantly higher levels of leaf chlorophyll content, net photosynthetic rate and therefore higher dry matter accumulation and yield with 200 mM NaCl as compared to the WT plants. Tolerance index data showed better salt tolerance potential of T1 transgenic plants in comparison to WT. These findings provide first direct evidence that overexpression of single subunit MCM6 confers salinity stress tolerance without yield loss. The possible mechanism of salinity tolerance is discussed. These findings suggest that DNA replication machinery can be exploited for promoting stress tolerance in crop plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 2, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off