A single hemoglobin gene in Myrica gale retains both symbiotic and non-symbiotic specificity

A single hemoglobin gene in Myrica gale retains both symbiotic and non-symbiotic specificity Here, a hemoglobin gene from the nitrogen-fixing actinorhizal plant Myrica gale was isolated, cloned and sequenced. The gene (MgHb) was a class I hemoglobin with strong sequence homology to non-symbiotic hemoglobin genes. MgHb is highly expressed in symbiotic root nodules, but transcripts and protein were also detected in leaves of M. gale. In Arabidopsis thaliana the MgHb promoter, linked to a β-glucuronidase coding region, directed expression in the vascular tissue, in shoot meristem and at root branch point - a pattern very similar to the combined expression pattern of the two non-symbiotic A. thaliana hemoglobin promoters AHb1 and AHb2. The results points to a symbiotic as well as a non-symbiotic specificity of MgHb similar to a hemoglobin gene identified in Parasponia andersonii, but different from the situation in Casuarina glauca - a close actinorhizal relative of M. gale. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A single hemoglobin gene in Myrica gale retains both symbiotic and non-symbiotic specificity

Loading next page...
 
/lp/springer_journal/a-single-hemoglobin-gene-in-myrica-gale-retains-both-symbiotic-and-non-BxmypLFrhS
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-0048-1
Publisher site
See Article on Publisher Site

Abstract

Here, a hemoglobin gene from the nitrogen-fixing actinorhizal plant Myrica gale was isolated, cloned and sequenced. The gene (MgHb) was a class I hemoglobin with strong sequence homology to non-symbiotic hemoglobin genes. MgHb is highly expressed in symbiotic root nodules, but transcripts and protein were also detected in leaves of M. gale. In Arabidopsis thaliana the MgHb promoter, linked to a β-glucuronidase coding region, directed expression in the vascular tissue, in shoot meristem and at root branch point - a pattern very similar to the combined expression pattern of the two non-symbiotic A. thaliana hemoglobin promoters AHb1 and AHb2. The results points to a symbiotic as well as a non-symbiotic specificity of MgHb similar to a hemoglobin gene identified in Parasponia andersonii, but different from the situation in Casuarina glauca - a close actinorhizal relative of M. gale.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 20, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off