A single-camera coupled PTV–LIF technique

A single-camera coupled PTV–LIF technique  A single-camera coupled particle tracking velocimetry–laser-induced fluorescence (PTV–LIF) technique and validation results from an experiment in a neutrally buoyant turbulent round jet are presented. The single-camera implementation allows the use of a 12-bit 60 frame-per-second 1024 × 1024 pixel digital CCD camera capable of streaming images in real time to hard disk resulting in very accurate PTV and LIF with excellent spatial and temporal resolution. The technique is capable of determining the turbulent scalar flux, as well as the Reynolds stress and mean and fluctuating velocity and concentration fields. Details of dye choice, corrections for attenuation due to dye, particles and water, photobleaching, vignetting, CCD calibration, and illumination power and geometry corrections are presented. Detailed results from the validation experiment confirm the accuracy and resolution of the technique, and in particular, the ability to measure . Bootstrap 95% uncertainty intervals are presented for the calculated statistics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A single-camera coupled PTV–LIF technique

Loading next page...
 
/lp/springer_journal/a-single-camera-coupled-ptv-lif-technique-b2RQE00ZtO
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480000259
Publisher site
See Article on Publisher Site

Abstract

 A single-camera coupled particle tracking velocimetry–laser-induced fluorescence (PTV–LIF) technique and validation results from an experiment in a neutrally buoyant turbulent round jet are presented. The single-camera implementation allows the use of a 12-bit 60 frame-per-second 1024 × 1024 pixel digital CCD camera capable of streaming images in real time to hard disk resulting in very accurate PTV and LIF with excellent spatial and temporal resolution. The technique is capable of determining the turbulent scalar flux, as well as the Reynolds stress and mean and fluctuating velocity and concentration fields. Details of dye choice, corrections for attenuation due to dye, particles and water, photobleaching, vignetting, CCD calibration, and illumination power and geometry corrections are presented. Detailed results from the validation experiment confirm the accuracy and resolution of the technique, and in particular, the ability to measure . Bootstrap 95% uncertainty intervals are presented for the calculated statistics.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off