A simulation-based quantitative analysis on the topological heritability of Dandelion-encoded meta-heuristics for tree optimization problems

A simulation-based quantitative analysis on the topological heritability of Dandelion-encoded... The solutions to many optimization paradigms arising from different application domains can be modeled as a tree graph, in such a way that nodes represent the variables to be optimized and edges evince topological relationships between such variables. In these problems the goal is to infer an optimal tree graph interconnecting all nodes under a measure of topological fitness, for which a wide portfolio of exact and approximative solvers have hitherto been reported in the related literature. In this context a research line of interest in the last few years has been focused on the derivation of solution encoding strategies suited to deal with the topological constraints imposed by tree graph configurations, particularly when the encoded solution undergoes typical operators from Evolutionary Computation. Almost all contributions within this research area focus on the use of standard crossover and mutation operators from Genetic Algorithms onto the graph topology beneath encoded individuals. However, the pace at which new evolutionary operators have emerged from the community has grown much sharply during the last decade. This manuscript elaborates on the topological heritability of the so-called Dandelion tree encoding approach under non-conventional operators. This experimental application-agnostic-based study gravitates on the topological transmission of Dandelion-encoded solutions under a certain class of multi-parent crossover operators that lie at the core of the family of $$(\mu +1)$$ ( μ + 1 ) evolution strategies and in particular, the so-called Harmony Search algorithm. Metrics to define topological heritability and respect will be defined and evaluated over a number of convergence scenarios for the population of the algorithm, from which insightful conclusions will be drawn in terms of the preserved structural properties of the newly produced solutions with respect to the initial Dandelion-encoded population. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soft Computing Springer Journals

A simulation-based quantitative analysis on the topological heritability of Dandelion-encoded meta-heuristics for tree optimization problems

Loading next page...
 
/lp/springer_journal/a-simulation-based-quantitative-analysis-on-the-topological-QtgSQGhOQz
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
ISSN
1432-7643
eISSN
1433-7479
D.O.I.
10.1007/s00500-016-2436-z
Publisher site
See Article on Publisher Site

Abstract

The solutions to many optimization paradigms arising from different application domains can be modeled as a tree graph, in such a way that nodes represent the variables to be optimized and edges evince topological relationships between such variables. In these problems the goal is to infer an optimal tree graph interconnecting all nodes under a measure of topological fitness, for which a wide portfolio of exact and approximative solvers have hitherto been reported in the related literature. In this context a research line of interest in the last few years has been focused on the derivation of solution encoding strategies suited to deal with the topological constraints imposed by tree graph configurations, particularly when the encoded solution undergoes typical operators from Evolutionary Computation. Almost all contributions within this research area focus on the use of standard crossover and mutation operators from Genetic Algorithms onto the graph topology beneath encoded individuals. However, the pace at which new evolutionary operators have emerged from the community has grown much sharply during the last decade. This manuscript elaborates on the topological heritability of the so-called Dandelion tree encoding approach under non-conventional operators. This experimental application-agnostic-based study gravitates on the topological transmission of Dandelion-encoded solutions under a certain class of multi-parent crossover operators that lie at the core of the family of $$(\mu +1)$$ ( μ + 1 ) evolution strategies and in particular, the so-called Harmony Search algorithm. Metrics to define topological heritability and respect will be defined and evaluated over a number of convergence scenarios for the population of the algorithm, from which insightful conclusions will be drawn in terms of the preserved structural properties of the newly produced solutions with respect to the initial Dandelion-encoded population.

Journal

Soft ComputingSpringer Journals

Published: Nov 11, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off