A simple setup for episcopic microtomy and a digital image processing workflow to acquire high-quality volume data and 3D surface models of small vertebrates

A simple setup for episcopic microtomy and a digital image processing workflow to acquire... The use of volume data and digital three-dimensional (3D) surface models in biology has increased quickly and steadily. Various methods are available to acquire 3D data, among them episcopic imaging techniques. Based on the episcopic microscopy with on-block staining protocol of Weninger et al. (Anat Embryol 197:341–348, 1998), we describe a simple and versatile setup for episcopic microtomy. It is composed of a consumer DSLR digital camera combined with standard histology equipment. The workflow of block surface staining and imaging, image processing, stack alignment, surface generation (including a custom Amira® macro), and 3D model editing is described in detail. For our sample specimen (Alytes obstetricans; Amphibia: Anura) we obtained images with a pixel size of 5.67 × 5.67 µm2. The generated image stacks allowed distinguishing different tissues and were well-suited for creating a 3D surface model. We analyzed the alignment quality achieved by various selections of specimen and fiducial marker spots. The fiducial spots had a significant positive effect on the alignment quality with the best alignment having a maximum mean alignment error of about 44.7 µm. We further tested the APS-C camera with combinations of macro lens, extension tube or teleconverter. The macro lens and extension tube yielded the smallest pixel size of 2.53 × 2.53 µm2. Considering data quality and resolution, and depending on object sizes and research goals, DSLR captured episcopic microtomy can be an alternative to other techniques, such as traditional histological sectioning or micro-computed tomography. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Zoomorphology Springer Journals

A simple setup for episcopic microtomy and a digital image processing workflow to acquire high-quality volume data and 3D surface models of small vertebrates

Loading next page...
 
/lp/springer_journal/a-simple-setup-for-episcopic-microtomy-and-a-digital-image-processing-YnYN6ijrKt
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Animal Anatomy / Morphology / Histology; Developmental Biology; Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography
ISSN
0720-213X
eISSN
1432-234X
D.O.I.
10.1007/s00435-017-0386-3
Publisher site
See Article on Publisher Site

Abstract

The use of volume data and digital three-dimensional (3D) surface models in biology has increased quickly and steadily. Various methods are available to acquire 3D data, among them episcopic imaging techniques. Based on the episcopic microscopy with on-block staining protocol of Weninger et al. (Anat Embryol 197:341–348, 1998), we describe a simple and versatile setup for episcopic microtomy. It is composed of a consumer DSLR digital camera combined with standard histology equipment. The workflow of block surface staining and imaging, image processing, stack alignment, surface generation (including a custom Amira® macro), and 3D model editing is described in detail. For our sample specimen (Alytes obstetricans; Amphibia: Anura) we obtained images with a pixel size of 5.67 × 5.67 µm2. The generated image stacks allowed distinguishing different tissues and were well-suited for creating a 3D surface model. We analyzed the alignment quality achieved by various selections of specimen and fiducial marker spots. The fiducial spots had a significant positive effect on the alignment quality with the best alignment having a maximum mean alignment error of about 44.7 µm. We further tested the APS-C camera with combinations of macro lens, extension tube or teleconverter. The macro lens and extension tube yielded the smallest pixel size of 2.53 × 2.53 µm2. Considering data quality and resolution, and depending on object sizes and research goals, DSLR captured episcopic microtomy can be an alternative to other techniques, such as traditional histological sectioning or micro-computed tomography.

Journal

ZoomorphologySpringer Journals

Published: Nov 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off