A Simple 3-Parameter Model for Cancer Incidences

A Simple 3-Parameter Model for Cancer Incidences We propose a simple 3-parameter model that provides very good fits for incidence curves of 18 common solid cancers even when variations due to different locations, races, or periods are taken into account. From a data perspective, we use model selection (Akaike information criterion) to show that this model, which is based on the Weibull distribution, outperforms other simple models like the Gamma distribution. From a modeling perspective, the Weibull distribution can be justified as modeling the accumulation of driver events, which establishes a link to stem cell division based cancer development models and a connection to a recursion formula for intrinsic cancer risk published by Wu et al. For the recursion formula a closed form solution is given, which will help to simplify future analyses. Additionally, we perform a sensitivity analysis for the parameters, showing that two of the three parameters can vary over several orders of magnitude. However, the shape parameter of the Weibull distribution, which corresponds to the number of driver mutations required for cancer onset, can be robustly estimated from epidemiological data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Loading next page...
 
/lp/springer_journal/a-simple-3-parameter-model-for-cancer-incidences-1LPxjqPq8C
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-21734-x
Publisher site
See Article on Publisher Site

Abstract

We propose a simple 3-parameter model that provides very good fits for incidence curves of 18 common solid cancers even when variations due to different locations, races, or periods are taken into account. From a data perspective, we use model selection (Akaike information criterion) to show that this model, which is based on the Weibull distribution, outperforms other simple models like the Gamma distribution. From a modeling perspective, the Weibull distribution can be justified as modeling the accumulation of driver events, which establishes a link to stem cell division based cancer development models and a connection to a recursion formula for intrinsic cancer risk published by Wu et al. For the recursion formula a closed form solution is given, which will help to simplify future analyses. Additionally, we perform a sensitivity analysis for the parameters, showing that two of the three parameters can vary over several orders of magnitude. However, the shape parameter of the Weibull distribution, which corresponds to the number of driver mutations required for cancer onset, can be robustly estimated from epidemiological data.

Journal

Scientific ReportsSpringer Journals

Published: Feb 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off