A Semiparametric and Location-Shift Copula-Based Mixture Model

A Semiparametric and Location-Shift Copula-Based Mixture Model Modeling mixtures of distributions has rested on Gaussian distributions and/or a conditional independence hypothesis for a long time. Only recently have researchers begun to construct and study broader generic models without appealing to such hypotheses. Some of these extensions use copulas as a tool to build flexible models, as they permit modeling the dependence and the marginal distributions separately. But this approach also has drawbacks. First, the practitioner has to make more arbitrary choices, and second, marginal misspecification may loom on the horizon. This paper aims at overcoming these limitations by presenting a copulabased mixture model which is semiparametric. Thanks to a location-shift hypothesis, semiparametric estimation, also, is feasible, allowing for data adaptation without any modeling effort. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Classification Springer Journals

A Semiparametric and Location-Shift Copula-Based Mixture Model

Loading next page...
 
/lp/springer_journal/a-semiparametric-and-location-shift-copula-based-mixture-model-LJGUDbXkNH
Publisher
Springer US
Copyright
Copyright © 2017 by Classification Society of North America
Subject
Statistics; Statistical Theory and Methods; Pattern Recognition; Bioinformatics; Signal,Image and Speech Processing; Psychometrics; Marketing
ISSN
0176-4268
eISSN
1432-1343
D.O.I.
10.1007/s00357-017-9243-9
Publisher site
See Article on Publisher Site

Abstract

Modeling mixtures of distributions has rested on Gaussian distributions and/or a conditional independence hypothesis for a long time. Only recently have researchers begun to construct and study broader generic models without appealing to such hypotheses. Some of these extensions use copulas as a tool to build flexible models, as they permit modeling the dependence and the marginal distributions separately. But this approach also has drawbacks. First, the practitioner has to make more arbitrary choices, and second, marginal misspecification may loom on the horizon. This paper aims at overcoming these limitations by presenting a copulabased mixture model which is semiparametric. Thanks to a location-shift hypothesis, semiparametric estimation, also, is feasible, allowing for data adaptation without any modeling effort.

Journal

Journal of ClassificationSpringer Journals

Published: Oct 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off