A self-organising biomimetic collagen/nano-hydroxyapatite-glycosaminoglycan scaffold for spinal fusion

A self-organising biomimetic collagen/nano-hydroxyapatite-glycosaminoglycan scaffold for spinal... The use of spinal fusion surgery as a treatment for degenerative spinal conditions and chronic back pain is increasing. However, this technique requires use of a bone grafting material to fuse the vertebrae, traditionally autologous bone, which consists of an optimal combination of osteogenic cell precursors, extracellular matrix proteins and mineral components. To date, this remains the ‘gold standard’ material but its supply is limited and is associated with a number of clinical and ethical difficulties; consequently, various combinations of cells with biological scaffold materials have been tested but have failed to achieve fusion rates even comparable to autologous bone. We successfully fabricated a novel collagen-based scaffold using self-organising atelocollagen combined with nano-hydroxyapatite and chondroitin sulphate, cross-linked by microbial transglutaminase. The scaffold was characterised using a range of imaging, chemical composition and thermal analysis techniques. It was found to exhibit appropriate stiffness and suitable pore size for the adhesion, growth and differentiation of MSCs. The low toxicity makes it suitable for clinical application, and its slow degradation profile would enable the scaffold to promote bone growth over an extended period. This material therefore shows promise for clinical use in spinal fusion and other procedures requiring the use of bone grafts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

A self-organising biomimetic collagen/nano-hydroxyapatite-glycosaminoglycan scaffold for spinal fusion

Loading next page...
Springer US
Copyright © 2017 by The Author(s)
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial