A selective neural network ensemble classification for incomplete data

A selective neural network ensemble classification for incomplete data Neural network ensemble (NNE) is a simple and effective method to deal with incomplete data for classification. However, with the increase in the number of missing values, the number of incomplete feature combinations (feature subsets) grown rapidly which makes the NNE method very time-consuming and the accuracy is also need to be improved. In this paper, we propose a selective neural network ensemble (SNNE) classification for incomplete data. The SNNE first obtains all the available feature subsets of the incomplete dataset and then applies mutual information to measure the importance (relevance) degree of each feature subset. After that, an optimization process is applied to remove the feature subsets by satisfying the following condition: there is at least a feature subset contained in the removed feature subset and the difference of their importance degree is smaller than a given threshold δ. Finally, the rest of the feature subsets were used to train a group of neural networks and the classification for a given sample is decided by weighted majority voting of all available components in the ensemble. Experimental results show that δ = 0.05 is reasonable in our study. It can improve the efficiency of the algorithm without loss the algorithm accuracy. Experiments also show that SNNE outperforms the NNE-based algorithms compared. In addition, it can greatly reduce the running time when dealing with datasets with larger number of missing values. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Machine Learning and Cybernetics Springer Journals

A selective neural network ensemble classification for incomplete data

Loading next page...
 
/lp/springer_journal/a-selective-neural-network-ensemble-classification-for-incomplete-data-bJR9yxLf9p
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics; Complex Systems; Systems Biology; Pattern Recognition
ISSN
1868-8071
eISSN
1868-808X
D.O.I.
10.1007/s13042-016-0524-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial